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1 Introduction

Black hole attractors are solutions of supergravity theories containing gauge and scalar fields, and
carry an electric as well as magnetic charge. Such solutions appear in various extended supergravity
theories, but here we will only discuss some examples in N = 2, D = 4 supergravity coupled to a
single vector multiplet only. Furthermore, we limit our analysis to extremal black hole solutions
and will always assume our space-time to be static and spherically symmetric. Interesting physical
features we will discuss are the attractor mechanism, residual supersymmetry in the black hole
solutions and a set of first-order differential equations, exhibiting a gradient flow, which describe
the scalar dynamics.

The values of the scalar fields at spatial infinity determine the mass of the black hole. However,
any value of the scalar field at spatial infinity will have a fixed value at the horizon of the black hole.
This value only depends on the charges of the black hole, and the ‘memory’ of the scalar fields’ value
at infinity is lost. The name ‘attractor’ refers to the set of first-order differential equations that
govern the ‘flow’ of the scalars, reminiscing of a gradient flow towards fixed points from dynamical
systems theory. We will see that the area of the horizon and hence the black hole’s entropy depends
only on the charges of the black hole and is independent of the boundary conditions on scalars.

These black hole attractors also arise as solutions of vanishing linearized fermion supersymmetry
transformations of N = 2 supergravity, implying they are supersymmetric. The concept of central
charges in extended supersymmetry will play a crucial role in our analysis of both the attractor
mechanism, as well as proving that our solutions are supersymmetric, and this framework allows
one to easily generalise our work to include an arbitary number of vector multiplets.

The report is organized as follows. In Section 2, we recall a few concepts on black holes and
electromagnetic dualities. In Section 3, we consider a first example of a black hole attractor:
the dilaton black hole. Section 4 sets the scene for more general black hole attractor solutions.
Supersymmetric solutions and central charges are introduced in Section 5, where we also show
that the dilaton black hole is supersymmetric. After this, we return to the more general solutions
and show that they are attractors in Section 6. The attractor mechanism allows us to easily show
they are supersymmetric as well. Section 7 gives a few remarks on generalisations to an arbitrary
amount of vector multiplets and to other theories or solutions. Besides this, we briefly discuss how
supersymmetry can act as a cosmic censor. The report tries to be as self-contained as possible, but
some results are taken without proof from the Supergravity book [1], from now on referred to as
‘the book’.

2 Preliminaries

In this section, we repeat a few basic results which are covered in the Advanced Field Theory and/or
other courses which are needed to understand the main body of the text.
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2.1 Recap on black hole solutions

When looking for general static and spherically symmetric solutions, one ends up with black holes
as an interesting class of possible solutions. Here we briefly repeat a few basic concepts on charged
black holes, which are useful to understand the report.

The Reissner-Nördstrom metric in 4-dimensional space-time describes a non-rotating, dyonic
(electrically and magnetically charged) black hole and is given by

ds2 = −F (r) dt2 + 1

F (r)
dr2 + r2 dΩ2

2 , (2.1)

where dΩ2
2 ≡ dθ2 + sin2 θ dφ2 is the line element of the 2-sphere. The function F (r) is given by

F (r) = 1− 2MG

r
+

(q2 + p2)G

4πr2
, (2.2)

where q, p are the electric and magnetic charge, respectively, while M is the mass of the black
hole. At r = 0, this solution has a true singularity, which cannot be remedied by coordinate
transformations. A black hole’s event horizon (or simply horizon) is roughly speaking a surface
past which radially infalling particles can never escape to infinity [2]. In our case, these surfaces
are 2-spheres with radii equal to the zeroes of F (r), which are

r± =MG±
√
M2G2 − (q2 + p2)G

4π
. (2.3)

A naked singularity is a singularity which is not hidden behind an event horizon. The cosmic
censorship conjecture dictates that solutions with naked singularities cannot form in gravitational
collapse. For the Reissner-Nördstrom black hole, this implies a lower bound on the mass such that
r± are both real:

M2 ≥ q2 + p2

4πG
. (2.4)

When the bound is satisfied, the black hole is said to be extremal. In this case, r+ = r− = rS ,
such that there is a single horizon, located at the Schwarzschild radius rS =MG. The metric then
becomes

ds2 = −(1−MG/r)2 dt2 + (1−MG/r)−2 dr2 + r2 dΩ2
2 . (2.5)

In our treatment, we prefer to have the horizon at radial coordinate r = 0, such that we introduce
a new radial coordinate v = r −MG and the metric is

ds2 = −(1 +MG/v)−2 dt2 + (1 +MG/v)2
(
dv2 + v2 dΩ2

2

)
. (2.6)

Near the horizon v = 0, we can expand the metric and find

ds2 ≈ − v2

(MG)2
dt2 + (MG)2

dv2

v2
+ (MG)2 dΩ2

2 . (2.7)

By introducing z = (MG)2/v, this can also be written as

ds2 ≈ (MG)2

z2
(
−dt2 + dz2

)
+ (MG)2 dΩ2

2 , (2.8)

which is known as the Robinson-Bertotti metric. It describes the product space AdS2 × S2, where
the AdS space L and radius of the sphere r are both equal to rS .
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2.2 Recap on electromagnetic duality

Electromagnetic duality is an interesting symmetry of field theories which contain abelian gauge
fields and that possibly interact with other fields. At the heart of this duality lies the concept of the
dual tensor, which for antisymmetric tensors Fµν of rank 2 in 4D Minkowski space-time is defined
as

F̃µν ≡ −1
2 iε

µνρσFρσ , (2.9)

where εµνρσ, the Levi-Civita tensor, is defined with convention εtrθφ = 1. The square of the tilde
operation is the identity. The relation between the tilde operation and the Hodge dual is given by

F̃µν = −i (∗F )µν (2.10)

For field strength 2-forms in D = 4, the components of ∗F are

∗Fµν = 1
2

√
−gεµνρσF ρσ , ∗Fµν =

1

2
√
−g

εµνρσFρσ . (2.11)

We can furthermore define the 2-forms

F±
µν ≡ 1

2(Fµν ± F̃µν) , (2.12)

which often appear in formulae of N = 2 supergravity. For a free abelian gauge field, the Maxwell
and Bianchi equations are neatly summarized if we exploit the dual tensors: they become

∂µF
µν = 0 , ∂µF̃

µν = 0 . (2.13)

For this reason, we can think of Fµν as the basic field variable and ignore the underlying vector
potential. This is the approach we will adopt in this work. The change of variables

Fµν → F ′µν = iF̃µν (2.14)

is a symmetry of the free abelian gauge field. The symmetry exchanges electric and magnetic fields.

The simplest extension to interacting field theories is the case where the abelian gauge field is
coupled to a complex scalar field. This is common in supergravity theories, such as actions where
the kinetic terms of gauge fields depend on scalar fields. The duality transformation, with the
additional scalar field present, must now be extended such that all equations of motion remain
invariant. It is useful to introduce the real tensor

Gµν ≡ εµνρσ
δS

δF ρσ
, (2.15)

to formulate the duality transformations. The introduction of the tensor Gµν also allows for a
convenient way of computing the electric charge q and magnetic charge p, based on Stokes’ theorem:(

p
q

)
= −1

2

∫
Σ2

(
Fµν

Gµν

)
dxµ ∧ dxν , (2.16)

with Σ2 the boundary of a volume containing the charges. A field configuration with only non-
vanishing component Fθφ = −p sin θ/(4π) satisfies Maxwell’s equations with magnetic charge p,
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whereas a field configuration with only non-vanishing component Frt = q/(4πr2) is a solution of
Maxwell’s equations, with electric charge q. Such field configurations will appear in our discussion
of the dilaton black hole.

The resulting symmetry group is then SL(2,R) which also acts on the complex scalar field and
on the charges (see for example Exercise 22.25). In the more general case, where m gauge fields are
coupled to each other, it turns out that the duality transformations (in D = 4) form the symplectic
group Sp(2m,R). We note that Sp(2,R) = SL(2,R). We will encounter these groups later on.

3 The dilaton black hole

We first introduce the attractor mechanism in a simpler setting such that the main features are
clear, before turning our attention to the more general case. Our model lives in N = 2 supergravity
and contains a gravity multiplet and a single gauge vector multiplet. This means that the bosonic
fields are the metric gµν , the graviphoton, the gauge multiplet photon and a complex scalar z, and
we have two field strengths Fµν and F ′

µν . The target space for the scalars is the Poincaré plane,
such that Im(z) > 0.

In our example of a black hole attractor [3], it turns out that Re(z) vanishes1 and hence we
have only one real scalar ϕ(r), called the dilaton, which is related to z via z = ie−2ϕ. Hence the
bosonic part of the action can be written as

Sb =
1

2κ2

∫
d4x

√
−g
[
R− 2∂µϕ∂µϕ− 1

2
e−2ϕ

(
FµνFµν + F ′µνF ′

µν

)]
, (3.1)

with κ2 = 8πG. In isotropic coordinates, the line element can be written as

ds2 = −e2U(r) dt2 + e−2U(r)
(
dr2 + r2

(
dθ2 + sin2 θ dφ2

))
. (3.2)

In the remainder of this section, we will study the properties of this solution and see how the
attractor phenomenon emerges from it.

3.1 The gauge fields

Let us start by considering the gauge fields in more detail. One of the gauge fields is purely
electric, while the other is magnetic such that its dual is electric. Spherical symmetry then uniquely
determines these 2-forms to be given by

F = ±d

(
1

H1

)
∧ dt , G′ = ±d

(
1

H2

)
∧ dt , (3.3)

where H1 and H2 depend only on r, and G′ is defined by

G′
µν ≡ −1

2

√
−ge−2ϕεµνρσF

′ρσ = κ2εµνρσ
δS

δFρσ
, (3.4)

1More general solutions, where Re(z) ̸= 0, are called axion-dilaton black holes [4].
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which is equation (2.15), up to a factor κ2. We redefine several quantities compared to other
chapters of the Supergravity book by renaming NIJ → κ−2NIJ (see Section 5.1.1), hence the factor
κ2 appearing. This means that electric charge becomes qnew = κ2qold, and similar for magnetic
charge. Recall that in D = 4, we have

∗Fµν = 1
2

√
−gεµνρσF ρσ , (3.5)

such that G′
µν = −e−2ϕ (∗F ′)µν . Given the relations in Section 2.2, we can think of G′ as the dual

of F ′. The full solution is given by

e−2U = H1H2 , e−2ϕ = H1/H2 (3.6)

H1 = e−ϕ0 +
|q|
4πr

, H2 = eϕ0 +
|p′|
4πr

, (3.7)

where we have defined ϕ0 as the value of the dilaton field ϕ at spatial infinity. We do not prove
explicitly that this solution solves all field equations.

There are four different possibilities for the signs of the charges, as suggested by the ± symbol
in equation (3.3). We now check this with the following exercise, where we compute the magnetic
2-forms and evaluate their expressions at infinity.

Exercise 22.20

As a first intermediate step, we explicitly write out the components of F and G′. Note that

d

(
1

H1

)
= − 1

H2
1

dH1 =
1

H2
1

|q|
4πr2

dr , (3.8)

and similarly, we have

d

(
1

H2

)
=

1

H2
2

|p′|
4πr2

dr . (3.9)

Hence we have that

F = ± 1

H2
1

|q|
4πr2

dr ∧ dt ≡ 1

H2
1

q

4πr2
dr ∧ dt , (3.10)

G′ = ± 1

H2
2

|p′|
4πr2

dr ∧ dt ≡ − 1

H2
2

p′

4πr2
dr ∧ dt , (3.11)

where we defined q ≡ ±|q| and p′ ≡ ∓|p′|. Only Frt = −Ftr are non-zero, and similarly for G′.
These components are

Frt =
1

H2
1

q

4πr2
, G′

rt =
1

H2
2

p′

4πr2
. (3.12)

Let us now compute the ‘dual’ of F , which we call G and is calculated via equation (3.4).
Because of the Levi-Civita symbol, and the fact that only the rt- and tr-component of F are
non-zero, we see that the only non-zero components of G are Gθφ = −Gφθ, given by

Gθφ = −1
2

√
−ge−2ϕεθφρσF

ρσ . (3.13)
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To compute them, note that the summation over ρ and σ gives twice the same result, due to
antisymmetry of F ρσ and the Levi-Civita symbol. For F rt, we simply use the metric to raise
the indices, and find

F rt = grαgtβFαβ = grrgttFrt = −Frt , (3.14)

where we made use of our metric, as given by equation (3.2). The minus sign is cancelled by a
sign from the Levi-Civita tensor. Finally, we need that

√
−g = r2 sin θe−2U . Putting all results

together, we find

Gθφ = − q

4π
sin θ

1

H2
1

e−2Ue−2ϕ . (3.15)

We can get rid off the final combination of factors after we evaluate this expression at spatial
infinity. Then ϕ = ϕ0 by definition, and H1 = e−ϕ0 and H2 = eϕ0 according to equations (3.7)
such that H1H2 = 1. Using equations (3.6), it follows that e−2U = 1, and we are left with
e−2ϕ0/H2

1 , which is unity as well. Hence we find

G = − q

4π
sin θ dθ ∧ dφ . (3.16)

Let us now look at the calculation of F ′. We start by showing that

F ′
µν = 1

2

√
−ge2ϕεµνρσG′ρσ . (3.17)

To see this, let us reconsider the definition of the components of G′ as function of the com-
ponents of F ′, see equation (3.4). Using the definitions of the dual and tilde operation from
Section 2.2, we find that

G′
µν = −e−2ϕ

(∗F ′
µν

)
= −ie−2ϕF̃ ′

µν , (3.18)

where we absorbed the factor κ2. Rearranging factors, and applying the tilde operation on
both sides of the equation, we find

F ′
µν = ie2ϕG̃′

µν = e2ϕ
(∗G′

µν

)
, (3.19)

where we made use of the fact that tilde squares to the identity. Using equation (3.5), this can
then be written as

F ′
µν = 1

2

√
−ge2ϕεµνρσG′ρσ . (3.20)

Now, the steps are essentially identical to the derivation of G. We end up with

F ′
θφ = − p′

4π
sin θ

1

H2
2

e−2Ue2ϕ (3.21)

as the only non-zero components of F ′. Again, the combination of factors at the end becomes
unity if we make use of equations (3.6), such that

F ′ = − p′

4π
sin θ dθ ∧ dφ . (3.22)
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3.2 Example of attractor mechanism

We are now ready to illuminate the attractor mechanism in the dilaton black hole solution. First,
we show that the mass of the black hole depends on the value of the dilaton at spatial infinity, ϕ0.
Let us look at the grr component, which can be expanded using our definitions of H1,2 to find

− gtt = grr = 1 +
e−ϕ0 |p′|+ eϕ0 |q|

4πr
+

|qp′|
(4πr)2

. (3.23)

The horizon of the black hole is located at r = 0. We can compare with the grr component from
the Reissner-Nördstrom metric: see equation (2.6). We see that the mass of the black hole is
determined by the coefficient of the 1/r term in grr, and hence find

8πMG = e−ϕ0 |p′|+ eϕ0 |q| , (3.24)

such that the mass directly depends on |p′|, |q| and ϕ0. However, the value of the dilaton field at
the horizon depends only on the charges. By expanding H1/H2, we find

e−ϕ =
|q|+ 4πre−ϕ0

|p′|+ 4πreϕ0
. (3.25)

This tells us that the value of e−2ϕ at the horizon r = 0 is given by

(e−2ϕ)|r=0 ≡ (e−2ϕh) =

∣∣∣∣ qp′
∣∣∣∣ , (3.26)

which is independent of the value of the dilaton field at spatial infinity. For all choices of ϕ0 =
ϕ(r = +∞), the value of ϕ(r = 0) is fixed by the properties of the black hole. All possible boundary
conditions for ϕ have hence the same value at the horizon: this is precisely the attractor mechanism
that we anticipated earlier on.

3.3 Horizon area

Like the extremal Reissner-Nördstrom black hole, the metric of the dilaton black hole approaches the
Robinson-Bertotti metric near the horizon. Hence the dilaton black hole can be seen as interpolating
between two vacua: a flat space at spatial infinity, and a Robinson-Bertotti space at r = 0. This
interpretation comes from the gradient flow behaviour that we will discuss in Section 6. We now
compute the area of the horizon, show that this indeed agrees with the Robinson-Bertotti metric,
and also compute the invariants FµνF

µν , F ′
µνF

′µν at the horizon.

Exercise 22.21

For convenience we look at a specific timeslice t = T = cte which does not alter our conclusions
since the metric is static. In this case, it is clear that the horizon is a 2-sphere with radius r,
parametrized by the angles θ and φ. To compute the area, we therefore compute the area of a
2-sphere with radius R, and consider the limit R→ 0 to obtain the area of the horizon.

A 2-sphere with radius R is a 2-dimensional submanifold embedded in our space-time. The
line element on this submanifold can be found by plugging t = T , r = R into our original line

7



element, given in equation (3.2). This gives

ds2 = e−2UR2
(
dθ2 + sin2 θ dφ2

)
. (3.27)

The induced metric hαβ can be read off from this line element. The area A(R) of this subman-
ifold is computed via the formula

A(R) =

∫ √
hdkξ , (3.28)

where h is the determinant of the metric, and the coordinates parametrizing our submanifold
are ξ1 = θ, ξ2 = φ. Hence we find

A(R) = e−2UR2

∫∫
sin θ dθ dφ = 4πe−2UR2 . (3.29)

The area of the horizon can be found by taking the limit of this expression for R → 0. For
this, we can use that e−2U = H1H2 as defined earlier. We then find

A = lim
R→0

A(R) = 4π lim
R→0

[
R2

(
e−ϕ +

|q|
4πR

)(
eϕ +

|p′|
4πR

)]
=

|qp′|
4π

. (3.30)

For later convenience, we repeat here explicitly that the previous calculation essentially amounts
to

lim
r→0

(
r2e−2U

)
=

|qp′|
(4π)2

. (3.31)

If we use a similar reasoning to compute the horizon area for the Robinson-Bertotti metric, we
find

A = 4π(MG)2 . (3.32)

This agrees with the above result: we can get (MG)2 by comparing the 1/r2 terms of the grr
metric component between the dilaton black hole and the Reissner-Nördstrom metric. This
shows that (MG)2 = |qp′|/(4π)2, and the two areas agree.

We now check that the invariants FµνFµν and F ′µνF ′
µν are non-singular and constant on

the horizon. Let us first focus on the former. From our calculations of Exercise 22.20, we find
that

FµνF
µν = 2FrtF

rt = −2 (Frt)
2 = −2

1

H4
1

q2

(4π)2r4
, (3.33)

where we used equation (3.12) for Frt. This quantity is non-singular on the horizon, since

lim
r→0

(rH1) = lim
r→0

[
r

(
e−ϕ +

|q|
4πr

)]
=

|q|
4π

. (3.34)

Therefore, the invariant on the horizon evaluates to

(FµνF
µν)
∣∣
r=0

= −32π2

q2
. (3.35)
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To show that the other invariant F ′µνF ′
µν is non-singular and constant, we note that

F ′µνF ′
µν = 2F ′θφF ′

θφ = 2gθθgφφ(F ′
θφ)

2

= 2
p′2

(4π)2
e4Ur−4 , (3.36)

where we used results from Exercise 22.20 for F ′
θφ. From our result in equation (3.31), we then

find that on the horizon, the above evaluates to

(
F ′µνF ′

µν

) ∣∣
r=0

=
32π2

q2
. (3.37)

4 General black hole attractors

We will now develop a more general2 treatment of the black hole attractor mechanism. In this
section, we prepare ourselves by discussing the metric ansatz and its relation with non-extremal
black holes. Then, we will generalize our results for the field strengths to include arbitrary charges
(p, q), (p′, q′). The dilaton black hole can be obtained from the general solution by setting p = 0,
q′ = 0 and z = ie−2ϕ. Next, we discuss the equations of motion for extremal black holes and how
to solve them. After discussing supersymmetric solutions and central charges in the next section,
we will be able to reveal the attractor mechanism of these more general black hole solutions, as
well as prove that they are supersymmetric solutions of the theory.

4.1 Metric ansatz

We introduce a new radial coordinate τ = r−1, such that our metric ansatz now reads

ds2 = −e2U(τ) dt2 + e−2U(τ)

[
dτ2

τ4
+

1

τ2
(
dθ2 + sin2 θ dφ2

)]
. (4.1)

We note that the Levi-Civita tensor has convention εtτθφ = −1, in order to agree with our earlier
convention. This line element is the limit of c→ 0 of a more general line element:

ds2 = −e2U(τ) dt2 + e−2U(τ)

[
c4 dτ2

sinh4(cτ)
+

c2

sinh2(cτ)

(
dθ2 + sin2 θ dφ2

)]
. (4.2)

The idea is that for any choice of charges (p, q) and (p′, q′), we have a whole family of black hole
solutions described by the line element in equation (4.2) with parameter c. For c→ 0, the solutions
become extremal black holes. The parameter c is therefore called the non-extremality parameter.
To further support this claim, we now show that the metric (4.2) is equivalent with the Reissner-
Nördstrom metric, if c = (r+−r−)/2. Then c = 0 indeed corresponds to the extremal case where the

2The action can be found from equation (7.1) with nV = 1 and using the information given in equation
(5.10).
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Reissner-Nördstrom black hole has a single horizon. However, this text will only discuss extremal
solutions later on.

Exercise 22.22

Recall that the non-extremal Reissner-Nördstrom metric is

ds2 = −F (r) dt2 + 1

F (r)
dr2 + r2 dΩ2

2 , (4.3)

with

F (r) = 1− 2MG

r
+
q2G

4πr2
=

(r − r+)(r − r−)

r2
. (4.4)

The change of variable leading from one metric to the other is

c2

sinh2(cτ)
= (r − r+)(r − r−) . (4.5)

From comparing the two metrics and given the fact that the time coordinate remains the same,
we see that we have to define U(τ) via

e2U(τ) = F (r) . (4.6)

This automatically ensures that the metric of the 2-sphere agrees as well. Indeed, we have the
equality

e−2U(τ) c2

sinh2(cτ)
= r2 , (4.7)

if we combine equations (4.5) and (4.6). Comparing the radial parts, we find that the final
match between the metrics requires

e−2U(τ) c4

sinh4(cτ)
=

1

F (r)
dr2 , (4.8)

which, upon using equation (4.6), can be written as

c4

sinh4(cτ)
= dr2 . (4.9)

We will now show that this final relation implies that c = (r+ − r−)/2. For this, we start from
equation (4.5), and differentiate both sides to find

− c3 sinh−3(cτ) cosh(cτ) dτ =

(
r − (r+ + r−)

2

)
dr . (4.10)

We square this equation and find

c6 sinh−6(cτ) cosh2(cτ) dτ2 =

(
r − (r+ + r−)

2

)2

dr2 . (4.11)
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Now we make use of equation (4.9) to find

c2 sinh−2(cτ) cosh2(cτ) =

(
r − (r+ + r−)

2

)2

. (4.12)

Recall the well-known identity cosh2 x− sinh2 x = 1, such that

c2 =

(
r − r+ + r−

2

)2

− (r − r+)(r − r−) , (4.13)

where we again made use of equation (4.5). Expanding the squares, we find that the right hand
side evaluates to a constant:

c2 =

(
r+ + r−

2

)2

− r+r− , (4.14)

from which we deduce that indeed c = (r+ − r−)/2, as was to be shown.

For applications involving more general field strengths, including the generalisation to multiple
vector fields in the theory, it will prove convenient to show a few results valid for our metric ansatz
from equation (4.1).

Exercise 22.23

Suppose that Fµν is an antisymmetric tensor. We now show that

F̃tτ = i
e2U

sin θ
Fθφ , F̃θφ = −ie−2U sin θFtτ . (4.15)

First, recall that we have the relation

F̃µν = −i (∗F )µν , (4.16)

and we can again use the property from equation (3.5) to find

F̃µν = − i
2

√
−gεµνρσF ρσ . (4.17)

The metric that we are considering right now has

gµν = diag
(
−e2U , e−2Uτ−4, e−2Uτ−2, e−2Uτ−2 sin2 θ

)
,

√
−g = e−2uτ−4 sin θ . (4.18)

Now observe that

F̃tτ = i
√
−ggθθgφφFθϕ = i

e−2U

sin θ
Fθφ , (4.19)

where we used that εtτθφ = −1 and, as before, the fact that the summation over ρσ gives a
factor 2 due to antisymmetry of the two tensors being contracted. Similarly, we find

F̃θφ = i
√
−ggttgττFtτ = −ie−2U sin θFtτ , (4.20)
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where the sign flip is due to the gtt factor.

We now prove some useful results for the multi-component case, for which the Lagrangian
is given in equation (21.4) of the book (again up to factors κ2). As before, we define a 2-form
GµνI for each 2-form F I

µν as

GµνI ≡ κ2εµνρσ
δS

δF I
ρσ

= iIIJ F̃
J
µν +RIJF

J
µν , (4.21)

where I ≡ Im(NIJ) and R ≡ Re(NIJ) (see Section 5.1.1). The index I has values 0, . . . , nV
(with nV the total number of vector multiplets) and labels the different multiplets in the theory.
Its index placement is important for the symplectic formulation, which is discussed later on.
We write this equation explicitly for µν = tτ and θφ and solve the equations. We obtain

GtτI = iIIJ F̃
J
tτ +RIJF

J
tτ = − e2U

sin θ
IIJF

J
θφ +RIJF

J
tτ , (4.22)

where we used the result for F̃tτ we found above. Similarly, we can derive

GθφI = e−2U sin θIIJF
J
tτ +RIJF

J
θφ . (4.23)

We now prove we can neatly summarize this in the equation(
F I
tτ

GtτI

)
= −ΩM e2U

sin θ

(
F I
θφ

GθφI

)
, (4.24)

where Ω, the symplectic metric, and M are the matrices

Ω =

(
0 δ J

I

−δIJ 0

)
, M =

(
−(I +RI−1R)JK (RI−1) K

J

(I−1R)JK −(I−1)JK

)
. (4.25)

To show this, note that

ΩM =

(
(I−1R)IK −(I−1)IK

(I +RI−1R)IK −(RI−1) K
I

)
. (4.26)

Then we have that

ΩM
(
FK
θφ

GθφK

)
=

(
(I−1R)IKF

K
θφ − (I−1)IKGθφK

(I +RI−1R)IKF
K
θφ − (RI−1) K

I GθφK

)
. (4.27)
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We will show this result is equal to e−2U sin θ

(
F I
tτ

GtτI

)
, using earlier results. The first line of

the matrix in equation (4.27) reads

(I−1R)IKF
K
θφ − (I−1)IKGθφK = (I−1R)IKF

K
θφ − (I−1)IK

(
e−2U sin θIKLF

L
tτ +RKLF

L
θφ

)
= (I−1R)IKF

K
θφ − e−2U sin θF I

tτ − (I−1R)ILF
L
θφ

= −e−2U sin θF I
tτ , (4.28)

as was to be shown. The second entry can be manipulated as follows, again by substituting
our result for GθφK :

(I +RI−1R)IKF
K
θφ − (RI−1) K

I

(
e−2U sin θIKLF

L
tτ +RKLF

L
θφ

)
= IIKF

K
θφ − e−2U sin θRILF

L
tτ

= −e−2U sin θ

(
− e2U

sin θ
IIJF

J
θφ +RIJF

J
tτ

)
= −e−2U sin θGtτI , (4.29)

as was to be shown. From this result, we can also easily derive that

e2U

sin θ

(
Fθφ

Gθφ

)
= ΩM

(
Ftτ

Gtτ

)
(4.30)

without much effort. This is simply a consequence of the symplectic structure. Indeed, we will
show in Exercise 22.28 thatM is an element of Sp(2(nV +1),R), which means thatMΩM = Ω.
If A = −ΩMB, with A,B arbitrary symplectic vectors, then we can multiply on the left with
M, which gives MA = −ΩB. Now multiply on the left with Ω, to find ΩMA = −Ω2B. The
inverse of the symplectic metric is Ω−1 = −Ω, such that we end up with B = ΩMA. This
reasoning is precisely what brings us to equation (4.30) if we start from equation (4.24).

As already mentioned in the previous exercise, the matrix M is an element of the symplectic group,
in agreement with our recap from Section 2.2. We now prove this explicitly.

Exercise 22.28

To show that the matrixM is an element of Sp(2(nV +1),R), we have to prove thatMΩM = Ω.
We use equation (4.26) for the result of ΩM, and find

MΩM =

(
−(I +RI−1R)JK (RI−1) K

J

(I−1R)JK −(I−1)JK

)(
(I−1R)KL −(I−1)KL

(I +RI−1R)KL −(RI−1) L
K

)
(4.31)

Investigating each entry of the resulting matrix separately shows that this indeed results in Ω.
For example, the 11-component yields

− (I +RI−1R)JK(I−1R)KL + (RI−1) K
J (I +RI−1R)KL = 0JL , (4.32)
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and the 12-entry becomes

(I +RI−1R)JK(I−1)KL − (RI−1) K
J (RI−1) L

K = δ L
J , (4.33)

and similarly for the 21- and 22-component of the matrix.

In case we have only one complex scalar z, we can use the results from Exercise 20.18 and Exercise
20.19, which are given in equation (5.10) in this text. Then the matrix M becomes

M =
1

Im(z)

(
|z|2 Re(z)
Re(z) 1

)
. (4.34)

4.2 Field equations and black hole potential

Here we briefly discuss some useful tricks for solving the field equations. We will not derive ex-
pressions in detail and not show explicitly that our results indeed solve the field equations, but
rather focus on conceptual aspects. In particular, solving the Einstein equations is simplified by
introducing an auxiliary function called the black hole potential. Apart from its aid in solving the
field equations, the black hole potential turns out to be intimately linked with the central charge,
to be introduced in Section 5.2, and the area of the black hole horizon. It will prove to be an
important tool to show the attractor behaviour of the general solutions in Section 6.

4.2.1 Gauge fields

To solve for the gauge fields Fµν and F ′
µν , we start from the assumption that they describe dyons

with charges (p, q) and (p′, q′), respectively. Using spherical symmetry and the Bianchi identity
severely restricts their expressions such that only Ftτ and Fθφ are non-zero. The exact expressions
are determined by varying the action with respect to the gauge fields and integrating, where the
charges p, p′ and q, q′ appear as integration constant. The result can neatly be summarized by
displaying F and G as a symplectic vector, using the results from Exercise 22.23:

4π

(
F
G

)
= e2UΩM

(
p
q

)
dt ∧ dτ −

(
p
q

)
sin θ dθ ∧ dφ , (4.35)

where M is given by equation (4.34). The equations for F ′ and G′ are found using the same
formula and replacing p→ p′, q → q′. It will prove convenient in later exercises to work out F and
G individually by expanding the matrix product in the first term. Hence we find

F =
e2U

4π

1

Im(z)
(Re(z)p+ q) dt ∧ dτ − p

4π
sin θ dθ ∧ dφ (4.36)

G = −e
2U

4π

1

Im(z)

(
|z|2p+Re(z)q

)
dt ∧ dτ − q

4π
sin θ dθ ∧ dφ . (4.37)
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We can also go back to our original radial coordinate r by using the change of variable τ = r−1,
such that the above equations read

F = − e2U

4πr2
1

Im(z)
(Re(z)p+ q) dt ∧ dr − p

4π
sin θ dθ ∧ dφ (4.38)

G =
e2U

4πr2
1

Im(z)

(
|z|2p+Re(z)q

)
dt ∧ dr − q

4π
sin θ dθ ∧ dφ . (4.39)

We can easily check that the field strengths of the dilaton black hole solution agree with this general
form if we have charges (0, q) and (p′, 0), and put Re(z) = 0, Im(z) = e−2ϕ.

Exercise 22.26

For F , the second term vanishes since p = 0. Hence we have

F = −e
2Ue2ϕ

4πr2
q dt ∧ dr . (4.40)

By making use of the result that e−2U = H1H2 and e−2ϕ = H1/H2 and swapping the differen-
tials (resulting in a minus sign), we indeed find the result from equation (3.10). For F ′, we use
the same equation but with primes on the charges. Now we have q′ = 0 and since Re(z) = 0,
the first term vanishes. Hence the second term remains and indeed agrees with the result we
found in Exercise 22.20. For G, again the first term vanishes since Re(z) = 0 and p = 0, and
the second term then agrees with Exercise 22.20. For G′, the second term vanishes since q′ = 0,
and the first term reads

G′ =
e2Ue2ϕ

4πr2
|z|2p′ dt ∧ dr . (4.41)

Now it only remains to realize that Re(z) = 0 implies that |z| = Im(z) = e−2ϕ, such that the
numerator has a factor e2Ue−2ϕ = 1/H2

2 . Then we indeed find the same result as equation
(3.11) if we again swap the differentials.

4.2.2 Einstein equations and black hole potential

One also needs to solve the Einstein equations

Rµν = κ2
(
Tµν −

1

2
gµνT

ρ
ρ

)
, (4.42)

with energy-momentum tensor

κ2Tµν = Im(z)

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ + (F → F ′)

)
+

1

4(Im(z))2
(∂µz∂νz + ∂νz∂µz − gµν∂ρz∂

ρz) ,

(4.43)
where the notation F → F ′ tells us we should repeat the first two terms but replace F by F ′. The
only non-zero components are the diagonal ones. We can simplify the equations by introducing the

15



black hole potential :

(4π)2VBH =
1

2

(
p q

)
M
(
p
q

)
+

1

2

(
p′ q′

)
M
(
p′

q′

)
. (4.44)

≡ (4π)2V
(p,q)
BH + (4π)2V

(p′,q′)
BH . (4.45)

We will dedicate some time on the black hole potential, since it will play a crucial role in deriving
the gradient flow equations in Section 6. The following exercise shows that the black hole potential
is always positive.

Exercise 22.24

It is sufficient to show that each term individually on the right hand side of equation (4.44) is
positive, such that their sum is positive as well. To show this, note that the matrix product
gives

1

2

(
p q

)
M
(
p
q

)
=

1

2 Im(z)

(
|z|2p2 + 2Re(z)pq + q2

)
. (4.46)

We get a lower bound on this potential by using the basic fact that Re(z) ≥ −|z|. Then the
above equation tells us that

(4π)2V
(p,q)
BH ≥ 1

2 Im(z)

(
|z|2p2 − 2|z|pq + q2

)
=

1

2 Im(z)
(|z|p− q)2 ≥ 0 , (4.47)

since by assumption Im(z) > 0. This shows the black hole potential is indeed positive. We can
even say more, and relate VBH to the energy density which we obtain by inserting the gauge
fields F and F ′, as given by equation (4.36), in the electromagnetic terms of the stress tensor
in equation (4.43). In the intermediate steps below, we ignore the factor κ−2 in front of the
energy-momentum tensor. The term involving F in the T00 component is

T00 = Im(z)

(
FtτF

τ
t − 1

2
gtt

(
FtτF

tτ + FθφF
θφ
))

+ . . . (4.48)

= Im(z)

(
gττ (Ftτ )

2 − 1

2
gtt

(
gttgττ (Ftτ )

2 + gθθgφφ(Fθφ)
2
))

+ . . . (4.49)

=
Im(z)

2

(
gττ (Ftτ )

2 − gttg
θθgφφ(Fθφ)

2
)
+ . . . , (4.50)

where the dots each time denote the terms involving F ′ (the terms involving the scalar are not
considered here). Note that we heavily made use of the fact that our metric is diagonal. From
the result in equation (4.36), we gather that

Ftτ =
e2U

4π Im(z)
(Re(z)p+ q) , Fθφ = − p

4π
sin θ . (4.51)
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Using this along with the metric we are considering, we find

T00 =
Im(z)

2(4π)2
e6Uτ4

(
1

(Im(z))2
(
(Re(z))2p2 + 2Re(z)pq + q2

)
+ p2

)
+ . . . (4.52)

=
1

(4π)2 Im(z)
e6Uτ4

[
1
2

(
|z|2p2 + 2Re(z)pq + q2

)]
+ . . . (4.53)

= e6Uτ4V
(p,q)
BH + . . . , (4.54)

where V
(p,q)
BH was defined earlier. The term involving F ′ follows an identical derivation, so we

conclude that
T00 = e6Uτ4VBH , (4.55)

when only considering the electromagnetic terms in the energy-momentum tensor. Therefore,
since

√
−g = τ−4e−2U(τ) sin θ, and gtt = −e−2U , we find

√
−gT 0

0 =
√
−ggttT00 = −κ−2e2UVBH sin θ , (4.56)

where we restored the factor κ−2. So we can conclude that, at least concerning the radial
dependence, e2UVBH is essentially the electromagnetic energy density

√
−gT 0

0 .

A convenient property of the black hole potential is the fact that it is invariant under action of the
duality transformations, i.e. the group SL(2,R) in this context. We introduce notation to show
this in the following exercise: the scalar z and the charges (p, q) and (p′, q′) transform under the
action of SL(2,R) as

z → az − b

d− cz
,

(
p
q

)
→
(
d c
b a

)(
p
q

)
, (4.57)

and similarly for the charges (p′, q′).

Exercise 22.25

To show this, it is sufficient to prove it for the generators of the group, which are (i) inversion
(a = d = 0, b = −c = 1), (ii) translation (a = d = 1, c = 0, b ∈ R) and (iii) scale transfor-
mations (d = 1/a, b = c = 0). Note that it is again sufficient to consider one of the terms on
the right hand side of equation (4.44), since the transformation does not mix the charges (p, q)
with (p′, q′). Also recall from the previous exercise that

(4π)2V
(p,q)
BH =

1

2 Im(z)

(
p q

)
M
(
p
q

)
=

1

2

(
|z|2p2 + 2Re(z)pq + q2

)
. (4.58)

(i) Inversion is the transformation

z → −1

z
,

(
p
q

)
→
(
−q
p

)
. (4.59)
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It is fairly easy to show that

Im

(
−1

z

)
=

Im(z)

|z|2
, Re

(
−1

z

)
= −Re(z)

|z|2
, (4.60)

such that

V
(p,q)
BH → |z|2

Im(z)

(
|z|−2q2 + |z|−2Re(z)pq + p2

)
= V

(p,q)
BH , (4.61)

which shows that the black hole potential is invariant under inversions.
(ii) Translations act as

z → z − b ,

(
p
q

)
→
(

p
bp+ q

)
. (4.62)

Note that then Re(z) → Re(z)− b and |z|2 → |z|2 − 2bRe(z) + b2, such that

V
(p,q)
BH → 1

2 Im(z)

((
|z|2 − 2bRe(z) + b2

)
p2 + 2(Re(z)− b)p(bp+ q) + (bp+ q)2

)
= V

(p,q)
BH .

(4.63)
(iii) Scale transformations act as

z → a2z ,

(
p
q

)
→
(

1
ap
aq

)
. (4.64)

We then have

V
(p,q)
BH → 1

a2
1

2 Im(z)

(
a4|z|2 1

a2
p2 + 2a2Re(z)pq + a2q2

)
= V

(p,q)
BH . (4.65)

Since the first term, and hence also the second term, of the black hole potential is invariant
under the generators of SL(2,R), it is invariant under transformations of the full group, as was
to be shown.

The Einstein equations can be written as a function of the black hole potential, namely

Rtt = e6Uτ4VBH , (4.66)

Rττ = Ü − 2U̇2 = −e2UVBH + |ż|2/2(Im(z))2 , (4.67)

Rθθ = τ2Ü = τ2e2UVBH , (4.68)

where dots denote derivatives with respect to τ . The equation for Rφφ differs from the Rθθ equation
by a factor sin2 θ. Hence we find the two independent conditions

Ü = e2UVBH , (4.69)

U̇2 = e2UVBH − |ż|2

(2 Im(z))2
. (4.70)
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4.2.3 Scalar equations of motion

One can also derive the scalar equations of motion by varying the action with respect to z. It turns
out that we can also obtain these equations from varying an action functional resembling a classical
mechanics systems with variables U(τ), z(τ):

S[U, z] =

∫
dτ

(
U̇2 +

1

4(Im(z))2
|ż|2 + e2UVBH

)
. (4.71)

The Noether theorem then gives a conserved quantity, an “energy”

E ≡ U̇2 +
|ż|2

(2 Im(z))2
− e2UVBH , (4.72)

which is independent of τ . The above equation for U̇2 then implies we only consider solutions with
zero “energy” in this text.

5 Supersymmetry of black holes

In this section, we focus on supersymmetric solutions of supergravity theories and apply these
ideas to our black hole attractor solutions. We start off by discussing the general concepts of
Killing spinors and BPS solutions. Then, we return to our dilaton black hole and show that this
solution has residual supersymmetry. Afterwards, we discuss the concept of central charge, since
another formulation of BPS solution, for massive representations, states that the mass is equal to
the absolute value of the central charge. Central charges are related to the black hole potential and
allow us to elegantly show that the general black hole solutions with charges (p, q) and (p′, q′) are
also BPS solutions.

5.1 Killing spinors and BPS solutions

The above black hole solutions are formulated inN = 2 supergravity, a theory with two independent
supersymmetries. Generally, this does not imply that solutions of the theory are invariant under
supersymmetry transformations as well. If this is the case, however, then the solution is said to
be a Bogomol’nyi-Prasad-Sommerfeld or BPS solution (or simply ‘supersymmetric solution’). BPS
solutions are solutions which are invariant under a subalgebra of the supersymmetric algebra which
contains at least one fermionic generator. In essence, BPS solutions are solutions of the theory
which themselves carry a residual amount of global supersymmetry.

There exists a prescription to determine such special solutions. The essential tools to work with
are the Killing spinors. These are a finite subset of the spinor functions for which the supersym-
metry transformations leave the solution invariant. The Killing spinors contain a set of constant
parameters and hence determine the residual (global) supersymmetry of the solution. One can
derive Killing spinor conditions (of which the solutions are the desired Killing spinors) from the
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fermion transformation rules. With a classical solution at hand, one can write schematically the
local supersymmetry transformations as

δϵB(x) = ϵ(x)f(B) F (x) + . . . , δϵF (x) = g(B)ϵ(x) + . . . , (5.1)

where B(x) and F (x) represent boson and fermion fields, respectively. The dots denote higher-order
terms involving fermion fields only. If the solution has residual supersymmetry, this means that
the set of equations δϵF (x) = 0, δϵB(x) = 0 has a non-trivial solution for ϵ(x). However, fermion
fields vanish in a classical solution, and hence the equation δϵB(x) is certainly satisfied. Since the
higher-order terms vanish as well, only the linear term in the δϵF (x) equation remains. Hence a
BPS solution is a classical solution where the linearized fermion supersymmetry transformations
vanish:

δϵF (x)|lin ≡ g(B)ϵ(x) = 0 . (5.2)

If there are nQ linearly independent solutions to this set of equations, then we say the solution
preserves nQ supercharges. The solution is then said to be

nQ

N -BPS. An important point to keep in
mind is that the original symmetries are local, while the preserved ones are global. The goal in the
remainder of this section is to show that the dilaton black hole is a 1

2 -BPS solution by considering
the linearized fermion supersymmetry transformations. However, we will need some elements from
N = 2 supergravity for this.

5.1.1 Basics of N = 2 supergravity

Before we dive into the details of showing that the dilaton black hole is a BPS solution, we provide
a very brief overview of the basics of N = 2, D = 4 supergravity. Note that the details of N = 2
supergravity are not essential to the story here, so we will necessarily be too brief in this section.
In particular, we do not discuss gauging, moment maps, the relevance of hypermultiplets,... since
these ingredients are absent in our black hole attractor solutions.

In matter-coupled N = 2 supergravity, gravity is coupled to nV vector (gauge) multiplets and
nH hypermultiplets. Note that in our model above, we have nV = 1, nH = 0. This implies that the
bosonic sector has, apart from the graviton field, also nV + 1 gauge fields AI

µ, I = 0, . . . , nV and

nV + 1 scalars XI . These scalars can be parametrized by homogeneous coordinates, such that nV
complex scalars zα remain. The scalar manifold is a direct product of two target spaces determined
by the scalars in the gauge multiplets and hypermultiplets, respectively. The nV complex scalars
define a special Kähler manifold. This is a Kähler manifold with symplectic structure Sp(2(nV +1))
which originates from the N = 2 supersymmetry connecting the scalars with the gauge fields.
The scalars of the hypermultiplets, on the other hand, define a quaternionic-Kähler manifold. The
kinetic terms of gauge vectors only depend on the special Kähler manifold via a matrix NIJ(z, z)
given in equation (21.5) of the book. From the Kähler potential K, one can find the metric on the
scalar manifold, the Kähler metric, by3

Kαβ ≡ ∂α∂βK . (5.3)

3We use α, β to refer to the complex scalars, with regular Greek letters denoting the scalars, and barred
Greek letters denoting their complex conjugates. The notation in (5.3) defines subscripts of K to denote
derivatives of K with respect to these scalars.
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We do not discuss how, in general, the Kähler potential can be found. The supergravity theory
can be expressed using this symplectic structure, in its so-called symplectic formulation, but we
do not provide further details other than those needed for the exercises below. The action and
transformation rules can be found in Section 21.3 of the book. Of particular importance for our
discussion of BPS solutions are the bosonic parts of the fermion supersymmetry transformation
rules, see equation (21.42).

5.1.2 The dilaton black hole as 1
2
-BPS solution

We now show that the dilaton black hole is a BPS solution and preserves one supersymmetry. For
our model, we can ignore hypermultiplets and gaugings, such that the linearized fermion super-
symmetry transformations become

δψA
µ =

(
∂µ + 1

4ω
ab

µ γab − 1
2 iAµ

)
ϵA − 1

16γ
abT−

abε
ABγµϵB (5.4)

δχα
A = γµ∂µz

αϵA − 1
2κ

−2KαβG−
ab β

γabεABϵ
B , (5.5)

where the frame fields and connections are given in equations (22.70) and (22.71) of the book. We
used indices A,B to refer to the R-symmetry, and also introduced

Aµ = 1
2 iκ

2
(
∂µz

α∂αK − ∂µz
α∂αK

)
(5.6)

T−
ab = −4XI Im(NIJ)F

−J
ab (5.7)

G−
ab β

= ∇βX
I
Im(NIJ)F

−J
ab , (5.8)

where 2-forms like F−J
ab are defined by equation (2.12). We parametrized XI = yZI(z), with y

related to the Kähler potential by y = eκ
2K/2. The Kähler covariant derivative is defined to act as

∇αZ
I =

[
∂α + κ2(∂αK)

]
ZI . (5.9)

As before, we do not discuss the general ideas behind all of the above and limit ourselves to our
own model with nV = 1 and one coordinate z. For this, we can use the results of Exercise 20.18
and Exercise 20.19 from the book, which tells us that

Z0 = 1 , Z1 = i , e−κ2K = 4 Im(z) , Kzz = (2κ Im(z))2 , NIJ = −κ2zδIJ . (5.10)

Note that indices are now restricted to I = 0, 1, and α = z has only one value. The scalar y has the
value y = 1/(2

√
Im(z)). We now look for the possibility of the dilaton black hole being a solution

of vanishing fermion transformations. This means that z is imaginary, F 0
µν is electric, and F 1

µν is
magnetic, so

z = ie−2ϕ , F 0
i0 = ∂iψ , F̃ 1

i0 = ie2ϕ∂iχ . (5.11)
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The ansatz for F 1
µν ensures that the dual, Gµν1, is purely electric. Plugging everything into the

Killing conditions δψA
µ = 0, δχα

A = 0 yields4

0 = 1
2e

2Uγ0̂γî(∂iU)ϵA − 1
4γ

îeU−ϕ
(
∂iψ + e2ϕ∂iχ

)
εABϵB , (5.12)

0 = ∂iϵ
A − 1

2γîĵ(∂jU)ϵA + 1
4γ

0̂ĵe−U−ϕ
(
∂jψ + e2ϕ∂jχ

)
γîε

ABϵB , (5.13)

0 = iγ îeU∂ie
−2ϕϵA + ie−3ϕ

(
∂iψ − e2ϕ∂iχ

)
γ 0̂̂iεABϵ

B . (5.14)

Note that we are assuming the Killing spinors to be static, since our metric is static as well. The
first and second equation are δψA

0 and δψA
i , respectively. We combine the first equation and the

C-conjugate of the last to

γ îϵA∂ie
U+ϕ = γ î(∂iψ)γ0̂ε

ABϵB , γ îϵA∂ie
U−ϕ = γ î(∂iχ)γ0̂ε

ABϵB . (5.15)

The remaining Killing condition becomes

(∂i − 1
2∂iU)ϵA = 0 , (5.16)

since we only consider solutions depending on r. We solve the Killing conditions with

ψ = ±eU+ϕ , χ = ±eU−ϕ , ϵA = ±γ0̂ε
ABϵB , ϵA = eU/2ϵA(0) . (5.17)

Here, ϵA(0) is a constant spinor, and the signs are correlated. Hence we have two distinct sets of
solutions. We can now readily make the link with our earlier discussion of the dilaton black hole,
by setting ψ = ±H−1

1 and χ = ±H−1
2 . The solution with the upper (positive) sign corresponds

to negative electric and positive magnetic charge, while the solution with the lower (negative sign)
has a positive electric and negative magnetic charge: see Exercise 22.20. Hence we have shown
that for the dilaton black hole as classical solution, there exists a non-trivial configuration of the
supersymmetry parameters for which the linearized fermion supersymmetry transformations vanish.
In essence, we have shown that the dilaton black hole is a BPS solution.

We can gain even more insight by changing the basis of the spinors from {ϵ1, ϵ2} to {ϵ+, ϵ−},
where

ϵ± = ϵ2 ± γ0̂ϵ1 , (5.18)

which are still chiral. This basis is convenient, since it directly shows that one of these two Killing
spinors must vanish. Let us show this for the solution with the upper signs in equation (5.17).
Then we find

ϵ+ = ϵ2 + γ0̂ϵ1 = ϵ2 + γ0̂γ0̂ε
12ϵ2 = 0 , (5.19)

where we used that ε12 = −1. A similar analysis shows that in the other solution, we have ϵ− = 0.
Hence the solution with the two positive signs preserves the ϵ− supersymmetry, while the solution
with two negative signs preserves the ϵ+ supersymmetry.

In Exercise 22.20, we said that there are four different configurations for the signs in the field
strenghts for the dilaton black hole solution. Here, only the two possibilities with opposite sign for
the charges appear. However, in Section 7, we will explain that the other two sign configurations
do arise as 1

4 -BPS solutions in N = 4 supergravity.

4We follow the book’s convention where hatted indices denote frame indices.

22



5.2 Central charge

We now dedicate a few words on the concept of central charge, its relation with BPS solutions
and how it is relevant to our work. A central charge is a new operator Z which, in extended
supersymmetry, can be inserted in the anti-commutator of two supercharges of identical chirality.
For N = 2, the anti-commutation relations become:

{Qαi, Qβj} = −1
2εijPLαβZ , {Q i

α , Q
j

β } = −1
2ε

ijPRαβZ . (5.20)

This operator is ‘central’ in the mathematical sense: it commutes with all other operators. Adding
central charges does not modify other anti-commutation relations between supercharges.

One can derive, from the algebra, that P 0 ≥ |Z|, implying that M ≥ |Z| in case of massive
representations. This is called the positivity bound, or also the BPS bound. Solutions that satisfy
this bound are also called BPS solutions and can be shown to be supersymmetric as well. Central
charges are necessary to allow for massive supersymmetric solutions. We will see that the BPS
bound is satisfied by the dilaton black hole, as expected.

For solutions with electric and magnetic charges, we can define central charges via equation
(21.52) in the book, where it is shown that

Z = 2κ−2(XIqI − FIp
I) , (5.21)

where FI can be obtained from XI using FI = NIJX
J . For a model with nV = 1, we can again

use the information provided in Exercise 20.18 and Exercise 20.19: see equation (5.10). Therefore,
we have

XI =
1

2

(
1/
√

Im(z)

i/
√

Im(z)

)
, FI = NIJX

J = −z
2

(
1/
√

Im(z)

i/
√

Im(z)

)
. (5.22)

Substituting in equation (5.21), with q0, p
0 → q, p and q1, p

1 → q′, p′, we find

Z =
κ−2√
Im(z)

[
(q + iq′) + z(p+ ip′)

]
. (5.23)

Let us now consider the dilaton black hole and put q′ = 0 = p, and z = ie−2ϕ. Then the central
charge reads

Z = κ−2(qeϕ − p′e−ϕ) . (5.24)

We can now use the result from Exercise 22.20, which tells us that q = ±|q| and p′ = ∓|p′|, to find

Z !
= ±κ−2

(
|q|eϕ + |p′|e−ϕ

)
. (5.25)

Note that the previous equation is only valid if the signs are correlated, hence the exclamation
mark. This means that our discussion holds for dilaton black holes where electric and magnetic
charge have opposite signs. The central charge at infinity Z∞ is defined by taking the limit of
Z for r → +∞ and amounts to replacing ϕ with ϕ0. Comparing with equation (3.24), we see
that the solution with positive signs satisfies M = Z∞, while the solution with negative signs
satisfies M = −Z∞. In essence, the dilaton black hole, with charges having opposite signs, satisfies
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M = |Z∞|. This equality is another proof that the dilaton black hole is a BPS solution. Note that
this equality can also be obtained by studying the transformation of the frame field component
eî0 and putting this equal to zero, since we are looking at supersymmetric solutions. We do not
provide the details here.

5.2.1 Black hole potential

The importance of central charge for black hole attractor solutions goes further than the proof that
M = |Z∞|. It turns out that the black hole potential is related to the central charge, which we
now show for the multi-component N = 2 model.

Exercise 22.27

Recall the general definition of the central charge as a function of the electric and magnetic
charge:

Z = 2κ−2
(
XIqI − FIp

I
)
. (5.26)

As already mentioned before, we have FI = NIJX
J , and hence we can write

Z = 2κ−2XI
(
qI −NIJp

J
)
. (5.27)

Hence we also have
Z = 2κ−2X

I (
qI −N IJp

J
)
. (5.28)

We will also need ∇αZ, with ∇α denoting the Kähler covariant derivative, for which we need
a bit more information on the symplectic formulation. In symplectic notation, the values of Z
and ∇αZ are given by

Z = 2⟨V,Γ⟩, ∇αZ = 2⟨∇αV,Γ⟩ V =

(
XI

FI

)
, Γ =

(
pI

qI

)
, (5.29)

where V,Γ are symplectic vectors and ⟨·, ·⟩ denotes the symplectic product defined to act as

⟨V, V ⟩ = XIF I − FIX
I
. (5.30)

This indeed gives the value for Z, if we absorb a factor κ2 appropriately. The final piece of the
puzzle is the information that

∇αV =

(
∇αX

I

∇αFI

)
, ∇αFI = N IJ∇αX

J . (5.31)

We can then find the value of ∇αZ:

∇αZ = 2κ−2
(
∇αX

IqI −∇αFIp
I
)

(5.32)

= 2κ−2∇αX
I
(
qI −N IJp

I
)
, (5.33)
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from which it follows that

∇αZ = 2κ−2∇αX
I (
qI −NIJp

I
)
. (5.34)

We now make a calculation which will introduce the black hole potential. Observe that

κ2ZZ +Kaβ∇αZ∇βZ = 4κ−4
[
κ2XIX

K (
qI −NIJp

J
) (
qK −NKLp

L
)

+Kαβ∇αX
I∇βX

K (
qI −N IJp

J
) (
qK −NKLp

L
) ]
.

= 4κ−4
[
κ2XIX

K (
qI −NIJp

J
) (
qK −NKLp

L
)

+Kαβ∇αX
K∇βX

I (
qK −NKLp

L
) (
qI −NIJp

J
) ]
.

= 4κ−4
(
qI −NIJp

J
) (
qK −NKLp

L
) [
κ2X

K
XI +Kαβ∇αX

K∇βX
I
]
,

(5.35)

where in the first to second equality, we simply relabeled dummy indices I ↔ K and J ↔ L in
the second term in order to get a common factor out. For the second factor in square brackets,
we can use the result of Exercise 20.29, which tells us that

− 1
2

(
I−1
)IJ

=
(
κ2X

I
XJ +Kαβ∇αX

I∇βX
J
)
, I ≡ Im(N ) . (5.36)

Then equation (5.35) becomes, after taking care of the redefinitions with κ2:

κ2ZZ +Kaβ∇αZ∇βZ = −4κ−2
(
qI −NIJp

J
) (
qK −NKLp

L
) (
I−1
)KI

. (5.37)

By explicitly expanding the matrix product, one can show that the right hand side is equal to

κ2ZZ +Kaβ∇αZ∇βZ = 2κ−2
(
p q

)
M
(
p
q

)
, (5.38)

where M is the matrix defined in equation (4.25). Recalling the definition of the black hole
potential in equation (4.44), we then find

(4π)2VBH = 1
4κ

4ZZ + 1
4κ

2Kαβ∇αZ∇βZ . (5.39)

We can further simplify this. Note that ∇αZ = 0 and ∇α(ZZ) = ∂α(ZZ), such that

∇αZ = 2

√
Z
Z
∂αZ . (5.40)

By taking the conjugate of this result, substituting in the above, and using κ2 = 8πG, we end
up with

G−2VBH = ZZ + 4κ−2Kαβ∂α|Z|∂β|Z| . (5.41)
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6 First order gradient flow equations

We now return to the general black hole solutions discussed before. Using the black hole potential,
we will derive a set of first-order differential equations governing the dynamics of the black hole
solution, which eventually will allow us to see the attractor phenomenon emerging in the more
general solution with charges (p, q) and (p′, q′). The gradient flow equations then allow us to show
that M = |Z∞|, such that the general black hole attractors are supersymmetric as well.

To start, first recall that Exercise 20.18 tells us that

Kzz = (2κ Im(z))−2 . (6.1)

Substituting in the general result for the black hole potential, equation (5.41), then gives

G−2VBH = |Z|2 + 16(Im(z))2∂z|Z|∂z|Z| . (6.2)

The scalar equation of motion could be found from an action resembling a classical mechanics
system: see equation (4.71), which depended on VBH. Substituting the above result for VBH now
yields

S[U, z] =

∫
dτ

(
U̇2 +

|ż|2

(2 Im(z))2
+G2e2U |Z|2 + 16G2e2U (Im(z))2∂z|Z|∂z|Z|

)
. (6.3)

We can combine the first and third, and second and last term and complete the squares. The
additional terms appearing can be recast into total derivatives and integrated out. The result is
then

S[U, z] =

∫
dτ

[(
U̇ +GeU |Z|

)2
+

1

4(Im(z))2
∣∣ż + 8G(Im(z))2eU∂z|Z|

∣∣2]− 2GeU
∣∣Z∣∣∣∣∣τ=+∞

τ=0
. (6.4)

This is now an extremely easy functional to extremize: since the Lagrangian is a sum of squares,
the condition to be at a minimum yields the equations{

ż = −8GeU (Im(z))2∂z|Z|
U̇ = −GeU |Z| .

(6.5)

A solution of these equations automatically solves the scalar equation of motion and the Einstein
equations, which are equations on U̇ and Ü . Again, the solutions we are interested in have zero
“energy” E , as defined before. The above set of first-order coupled differential equations exhibit the
structure of a gradient flow. Hence the dynamics of these black holes can be reduced to a system
of gradient “flow” equations for the variables z and U with “time” τ .

We now prove the equality M = |Z|∞ from the gradient flow equations. Since the solution
becomes flat at large distances (which correspond to τ = 0), we employ the normalization e2U(0) = 1
such that gtt = −1 at spatial infinity. The above differential equations tell us that gtt flows
monotonically upwards and approaches zero as we approach the horizon, as expected. At large
distance, we can expand this metric component in powers of 1/r. From our recap on black hole
solutions, we know that the first-order correction contains the mass M , such that

− gtt = e2U ≈ 1− 2MGτ = 1 +
d
(
e2U
)

dτ

∣∣∣
τ=0

τ . (6.6)
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Making use of the equation for U̇ , we obtain that

M = − 1

G
e2U(0)U̇(0) = |Z∞| . (6.7)

This is precisely the BPS condition. Hence we can conclude that the extremal charged black hole
solutions are BPS solutions.

The fixed point of the system of gradient flow equations is located at an extremum of |Z|, i.e.
where ∂α|Z| = 0. Since U̇ has to be zero as well, this is only possible if e2U → 0, which is at the
horizon τ → ∞. Hence the scalar field flows from a value determined by a boundary condition at
spatial infinity, and approaches a constant value at the black hole’s horizon which is an extremum
of |Z|. Therefore, the fixed point must be a minimum of |Z|. Indeed, one can check explicitly that
this is true for the dilaton black hole by looking at equation (5.25). So the scalar dynamics has
precisely the black hole attractor mechanism which we first encountered for the dilaton black hole.

The area of the horizon is determined by the minimum value of |Z|. This also corresponds to
the minimal value of the black hole potential, since at ∂z|Z| = 0, VBH has a value VBH = G2|Z|2min.
To check this, note that in Exercise 22.21 we found that the area of a 2-sphere at a fixed distance
r is A(τ) = 4πe−2U(τ)/τ2, with τ = r−1. We can rewrite this in terms of the central charge by
invoking the flow equations. First note that

d

dτ

(
e−U

)
= −U̇e−U = G|Z| τ→∞−−−→ G|Z|min . (6.8)

Now, the limit of A(τ) for τ → ∞ (i.e. the horizon) is undefined, since both numerator and
denominator tend to zero. We can fix this by using l’Hôpitals’ rule twice, and find

lim
τ→∞

A(τ) = 4π lim
τ→∞

(
−2U̇e−2U

2τ

)
= 4πG|Z| lim

τ→∞

(
d

dτ
e−U

)
= 4πG2|Z|2min (6.9)

The area of the black hole horizon is therefore

A = 4πG2|Z|2min = 4πVBH,min . (6.10)

We now verify the result of Exercise 22.21 with this formula. The central charge for the dilaton
black hole was given in equation (5.25). This is a real quantity, and the minimum of |Z| lies at
the value of the dilaton at the horizon: e−2ϕ = e−2ϕh = |q/p′|: see the derivation around equation
(3.26). We then find

|Z|min = κ−2eϕh |q| . (6.11)

Taking the square, and using the value of e−2ϕh , we indeed find that A = |qp′|/(4π), as we also
showed by a direct calculation without the central charge in Section 3.3.

7 Outlook and conclusion

In this final section, we give a brief overview of possible extensions for future work as well as a few
interesting topics which are related to supersymmetric black holes.
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7.1 Generalization to multiple vector multiplets

We can easily extend our discussion of the attractor mechanism to the general situation of N = 2
supergravity theories coupled to nV abelian vector multiplets. This means we have nV + 1 gauge
fields and field strenghts F I

µν , and nV complex scalars zα. The action, after rescaling the Kähler
metric with κ2, reads

S =
1

2κ2

∫
d4x

[√
−g
(
R− 2gµνKαβ̄∂µz

α∂νz
β + 1

2 Im(NIJ)F
I
µνF

µνJ
)
− 1

4 Re(NIJ)ε
µνρσF I

µνF
J
ρσ

]
.

(7.1)
The index I has values I = 0, . . . , nV , and α, β̄ label the complex scalars and their complex
conjugates, respectively. Some of the results in previous sections were already derived in this general
situation of nV vector multiplets. It turns out that minimal changes are needed to reproduce the
analysis of the attractor phenomenon in this more general case. A first modification is for the stress
tensor:

κ2Tµν = − Im(NIJ)

(
F I
µρF

ρJ
ν − 1

4
gµνF

I
ρσF

Jρσ

)
+Kαβ

(
∂µz

α∂νz
β + ∂νz

α∂µz
β − gµν∂ρz

α∂ρzβ
)
.

(7.2)
The source terms of the Ricci tensor are derived similar to the nV = 1 case, but we modify

|ż|2

2(Im(z))2
→ 2Kαβ̄ ż

αż
β
. (7.3)

Another modification is in the ‘classical action’, which now reads

S [U, {z}, {z}] =
∫

dτ

(
U̇2 +Kαβ ż

αż
β
+ e2UVBH

)
. (7.4)

In Exercise 22.27, we already derived VBH in the more general case of nV multiplets. Varying
the ‘classical’ action again gives a set of first-order differential flow equations. By copying the
analysis of the nV = 1 model with these changes, we can easily derive the attractor phenomenon
of supersymmetric black holes in N = 2 supergravity with nV abelian vector multiplets.

7.2 Related theories and solutions

Let us first give a few possible directions one could take to further investigate supersymmetric
black holes and black hole attractors. There are a few options which are clear by reconsidering
the assumptions we made in this work. For example, no extremal black holes were considered
for most of the work considered here. It turns out that non-extremal black holes always break
supersymmetry [5]. Other possibilities are to include multiple dilaton black holes at different
locations, generalizing the Papapetrou-Majumdar solution to include dilatons, include a gauge
group in the theory, or considering coupling to hypermultiplets. There also exist non-BPS but
still extremal black hole solutions, for which the role of the central charge in the flow equations is
replaced by a so-called “fake superpotential” [6]. The possibilities seem endless.
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A particular interesting endeavour which is tightly related to the present work is to go from
N = 2 supergravity to N = 4 supergravity [5]. There are two central charges, and hence two BPS
bounds similar to the one we derived here. Depending on whether none, one or both BPS bounds
are satisfied, the charged black hole solutions are non-, 1

4 - or
1
2 -BPS solutions. The action for the

dilaton black hole we started with can be embedded into the N = 4 theory. We find that the
two possible 1

2 -BPS solutions we found in Section 5.1.2, related to the two possible sign choices,
reappear in this larger theory as two distinct 1

4 -BPS solutions. In Exercise 22.20, we showed that
there are four different choices for the signs. The other two sign choices that did not arise as BPS
solutions in our work, in fact do arise as two other 1

4 -BPS solutions in this N = 4 supergravity.
They did not appear as solutions to our Killing conditions in our treatment since we considered
only two of these four supersymmetries. In the N = 4 theory, the solutions with identical sign for
the charges preserve other combinations of supersymmetries that were not treated here.

7.3 Supersymmetry as cosmic censor

A neat observation [5] is a relation between the “cosmic censorship conjecture” and supersymmetry.
The cosmic censorship conjecture is the hypothesis that naked singularities (i.e. unshielded by an
event horizon) cannot be formed through gravitational collapse. In essence: they should, as far as
we know, not exist in Nature. It is therefore a bit unsettling that some black hole solutions do have
a naked singularity. One then has to look for an argument that forbids such a mathematical solution
as a physical reality: this is then called a cosmic censor. A possible censor is supersymmetry. The
supersymmetric BPS bound, in the presence of central charges, can coincide with the lower bound
on the mass to avoid naked singularities. We will show this explicitly for the family of dilaton black
hole solutions with charges q, p′ (with opposite signs for the charges) whose extremal limit is the
BPS dilaton black holes discussed in this text.

Comparing the grr components of the dilaton black hole solution and Reissner-Nördstrom solu-
tion, we derive that (GM)2 = |qp′|/(4π)2 in order for their 1/r2 terms to agree. Since our solution
is an extremal one, we know that this is in fact a lower bound on the mass, such that non-extremal
black hole solutions related to this solution must satisfy

(GM)2 ≥ |qp′|/(4π)2 . (7.5)

We now show that this bound agrees with the BPS bound, M ≥ |Z∞|, by using equation (5.25) for
the central charge. The gradient flow equations showed that all solutions flow towards a minimum
of |Z|, which corresponded to the dilaton located at the horizon. Therefore, for any boundary
condition, we must have |Z∞| ≥ |Zh|, with equality if there is no flow at all (the dilaton field lies
at the fixed point, i.e., starts off at spatial infinity with its value at the horizon). Hence the bound
becomes

M2 ≥ |Z∞|2 ≥ |Zh|2 = κ−4
(
2|qp′|+ e2ϕh |q|2 + e−2ϕh |p′|2

)
. (7.6)

If we now fill in the value of e−2ϕh = |q/p′| and simplify, this bound indeed agrees with equation
(7.5).

Therefore, if supersymmetry is present, it ensures that the mass of the black hole is large
enough such that the singularity is hidden under an event horizon for observers outside of the black
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hole. This could be an important reason to further investigate the implications of supersymmetry
for black hole solutions, and check if supersymmetry acts as a cosmic censor in other black hole
solutions.

7.4 Conclusion

To conclude, the framework of matter-coupled N = 2, D = 4 supergravity allowed us to show that
charged extremal black holes are supersymmetric solutions. These black hole solutions behave as
attractors and let the scalar field ‘flow’ from an arbitrary value at the boundary towards a fixed
value on the horizon which only depends on the charges of the black hole. The terminology of ‘flow’
and ‘attractor’ arises from the fact that the dynamics of the scalar field is captured by a set of
first-order differential gradient flow equations. The flow tends towards the minimal of the absolute
value of the central charge, and this minimum also gives the area and hence the entropy of the
black hole. Supersymmetry appears to be able to censor naked singularities, and hence turn our
mathematical equations into physical realities. It is a tool that allows us to figure out the mysteries
of one of the most enigmatic objects in our universe, black holes.
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