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1 Introduction

As a result of its rapid development throughout much of the previous century — an intellec-
tual achievement that is often exclusively attributed to Alexander Grothendieck — and the
universality of the mathematical language in which it is written, algebraic geometry has rightly
affirmed its central role in modern day mathematics. It entertains a mutually beneficial rela-
tion to a variety of other mathematical fields, such as complex analysis, topology and number
theory, and it has revealed itself to be the elemental framework on which historically significant
proofs to certain key theorems are built. Deligne’s treatment of the Weil conjectures and Wiles’
proof of Fermat’s Last Theorem are notable examples of the latter. Most of the contemporary
advancements in pure mathematics therefore necessitate a profound insight into the theory of
algebraic geometry, and for this reason it is still a very active and blooming field in mathematics.

In its essence, algebraic geometry is concerned with the study of zero loci of ideals of polyno-
mials. It does so through the reconciliation of a multitude of concepts that arise in commutative
algebra, and the general understanding of geometric structures and spaces that has been devel-
oped throughout history. Despite the fact that present-day algebraic geometry operates on a
high level of abstraction — wherein schemes are the basic geometric objects of study and the
premises of category theory serve as the guiding principles for most of its advancements — any
introductory text on algebraic geometry begins with the disarming but fundamental definition
of an algebraic variety, as being the assemblage of the topological, algebraic and geometric fea-
tures we can attribute to zero loci of polynomials. The primary aspiration of this thesis is to
examine these features thoroughly, as well as emphasize the necessity of the study of algebraic
varieties and their properties in the solving of geometric problems. The latter is done through
a detailed treatment of a central problem in projective and enumerative geometry: how many
lines are contained in a general smooth cubic surface S of CP 3? We will prove that the answer
is exactly 27.

Concretely, we start by introducing the notion of an algebraic variety in the explicit context
of affine geometry. To this end, we present short digressions into commutative algebra and
topology, so as to fully comprehend the notion of an affine variety as being the natural outcome
of the reflections on zero sets of polynomials in these specific fields. We proceed to cover some
important properties of affine varieties, and formulate a theorem that is central to the whole of
algebraic geometry: Hilbert’s Nullstellensatz.
In the subsequent section, we repeat the above exercise in the context of projective geometry:
we go over the same notions, results and definitions as we did in affine algebraic geometry,
and thereby state their projective counterparts. We also treat the important concept of the
dimension of a projective variety, in view of its use for later purposes.
We follow up with a very practical introduction to functions of projective varieties, and we give
two fundamental results on so-called morphisms of varieties. These results will prove useful in
our approach to the 27-lines problem.
We finish off with a detailed treatment of the aforementioned 27-lines problem that incorporates
the theory of projective varieties and morphisms of varieties, as well as some new concepts that
arise in linear algebra and general projective geometry. This procedure is therefore divided
into a few intermediate steps: we first prove the existence of a single line in S, after which we
proceed to find the remaining lines in very specific and varied configurations to S.

The larger part of the theory that is presented in this text is based on the material intro-
duced by Miles Reid in Undergraduate algebraic geometry [9], unless stated otherwise.
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Notations and preliminary definitions

We briefly give the definitions of affine and projective spaces as a way of introducing the
notations that are used in this text. The preliminary theory on affine and projective geometry
is treated in depth in the courses Meetkunde I and Meetkunde II at KU Leuven, see [12] and [13].

Throughout this text, we generally work with a field K for which char K 6= 2. The set of
n-tuples of elements in K is then Kn. As a set, the affine space An(K) is simply Kn. We say
that two points p, q ∈ An(K)\{0} are equivalent if there exists a non-zero constant λ ∈ K such
that p = λq. Using this equivalence relation, we define the projective space of dimension n over
K as KPn := (An+1(K) \ {0})/ ≡.

2 Commutative algebra and affine varieties

At the heart of any introductory text on algebraic geometry lies the concept of an algebraic vari-
ety, which, loosely stated, relates to the zero locus of an ideal of polynomials in K[X1, . . . , Xn].
Whereas the ambient spaces, be it either the affine space An(K) or the projective space KPn−1,
of this zero locus differ greatly in their intrinsic nature, the idea behind the concept of an alge-
braic variety bears similarity in the two cases: it relies on the same framework that arises from
fundamental results in commutative algebra.

We therefore start this section with a brief study of these results, namely the consequences
of the Noetherian property of polynomial rings to the aforementioned zero locus. Through
the introduction of two correspondences, V and I, we then bridge from commutative algebra
to the subject of affine geometry, and give a precise formulation of the Zariski topology along
the way. This eventually allows for a precise definition of an affine variety. The discussion of
these concepts finally culminates in the postulation of a central theorem in algebraic geometry:
Hilbert’s Nullstellensatz.

2.1 Noetherian rings

An important property of an affine variety is the fact that it can be described by a finite number
of polynomials. This is because every polynomial ring K[X1, ..., Xn] over a field K is a so-called
Noetherian ring, a concept we now introduce:

Definition 2.1. A Noetherian ring R is a ring for which every ideal I ⊆ R is finitely generated:
there exist f1, . . . , fk ∈ I such that I = (f1, . . . , fk).

Any field K is Noetherian, since (0) and (1) are the only ideals. Because Z and K[X]
are both principal ideal domains, they are also Noetherian rings. There are multiple ways of
constructing new Noetherian rings from known ones. We first consider the quotient rings of a
Noetherian ring:

Proposition 2.2. If R is Noetherian, and I ⊆ R is an ideal, then R/I is Noetherian.

Proof. We know that for any ideal J̄ ⊆ R/I, there exists some ideal J ⊆ R, with I ⊆ J , so
that J̄ = J/I. If f1, . . . , fm generate J , then f̄1, . . . , f̄m generate J̄ , from which the proposition
follows.

Another possibility is to consider the polynomial ring of some known Noetherian ring R.
This is precisely the content of the Hilbert basis theorem, of which a proof can be found in Reid
[9, p.58].
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Theorem 2.3 (Hilbert basis theorem). If R is a Noetherian ring, then R[X] is also Noetherian.

An immediate consequence of Theorem 2.3 is that by induction, any polynomial ringK[X1, ..., Xn]
over a field K is Noetherian. This will prove vital in the remainder of the section.

2.2 Affine algebraic sets and the Zariski topology

From this point forward, we denote the variables of a polynomial by x1, . . . , xn, so as to conform
to the notation that is considered standard in algebraic geometry. Recall that by identifying
the affine space An(K) with Kn as a set, we recognize that the evaluation map, which evaluates
some f ∈ K[x1, . . . , xn] in all the points P = (a1, . . . , an) ∈ An(K), is a homomorphism of
rings. Through the introduction of correspondences V and I, we now relate the commutative
algebra that was discussed above to the affine geometry we pursue to study. Along the way, we
find the opportunity to equip An(K) with a topological structure.

2.2.1 The correspondence V

There exists a fundamental relationship between ideals J ⊆ K[x1, . . . , xn] and subsets of the
affine space An(K), which is formulated in the following correspondence:

V : {J ⊆ K[x1, . . . , xn] | J is an ideal } → {X ⊆ An(K)} : J 7→ V (J) , (1)

with V (J) the standard notation for the affine subset

V (J) = {P ∈ An(K) | f(P ) = 0, ∀f ∈ J} . (2)

In other words, V maps an ideal of a polynomial ring to its zeroes in the affine space An(K),
which, for this purpose, is identified with Kn as a set. If the ideal J is generated by a single func-
tion f , then we often write V (f). As a follow-up to the introduction of the V -correspondence,
we present the definition of an algebraic set in An(K):

Definition 2.4. A subset V ⊆ An(K) is called an algebraic set if there exists an ideal J ⊆
K[x1, . . . , xn] such that V = V (J).

A fundamental consequence of our study of Noetherian rings is that every algebraic set in
An(K) is the zero locus of a finite number of polynomials. Indeed, since K[x1, . . . , xn] is a
Noetherian ring, the defining ideal J ⊆ K[x1, . . . , xn] of some algebraic set V (J) ⊆ An(K) is
finitely generated, i.e. J = (f1, . . . , fm). It then holds that P ∈ V (J) if and only if P is a zero
of fi for i = 1, . . . ,m, so that precisely

V (J) = {P ∈ An(K) | fi(P ) = 0 for i = 1, . . . ,m} .

The algebraic sets in An(K) exhibit some interesting topological features, that will now be
discussed.

2.2.2 The Zariski topology

We first prove the following:

Proposition 2.5. Let I, J be ideals of K[x1, . . . , xn], and let {Iλ | λ ∈ Λ} be a set of ideals of
K[x1, . . . , xn], indexed by λ. The correspondence V then satisfies the following properties:

1. If I ⊆ J , then V (I) ⊇ V (J), and

2. V (0) = An(K), V (K[x1, . . . , xn]) = ∅, and
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3. V (I ∩ J) = V (I) ∪ V (J), and

4. V (
∑

λ∈Λ Iλ) =
⋂
λ∈Λ V (Iλ) .

Proof. 1. Since I ⊆ J , it is possible to write I = (f1, . . . , fm) and J = (f1, . . . , fm, . . . , fk),
with k ≥ m. If P ∈ V (J), then fi(P ) = 0 for i = 1, . . . , k, and so in particular fi(P ) = 0
for i = 1, . . . ,m, meaning P ∈ V (J).

2. Any P ∈ An(K) is a zero of the zero polynomial. On the other hand, if J = (x1, x1 − 1),
then V (J) = ∅, so that by the previous, V (K[x1, . . . , xn]) = ∅.

3. To prove the first inclusion, assume P 6∈ V (I) ∪ V (J). Then there exist functions f ∈ I,
g ∈ J such that f(P ) 6= 0 and g(P ) 6= 0. Since fg ∈ I ∩ J by definition of an ideal, and
since fg(P ) 6= 0 because K[x1, . . . , xn] is an integral domain, we have that P 6∈ V (I ∩ J).
Consequently, V (I ∩ J) ⊆ V (I) ∪ V (J).
Conversely, seen as I∩J ⊆ I, we have V (I) ⊆ V (I∩J) by the first part of this proposition.
The same holds for V (J), from which we conclude that V (I) ∪ V (J) ⊆ V (I ∩ J).

4. Write Iλ = (fλ1, . . . , fλmλ) for every λ ∈ Λ. Then the set G = {fλi | λ ∈ Λ, i = 1, . . . ,mλ}
generates

∑
λ∈Λ Iλ. If P ∈ V (

∑
λ∈Λ Iλ), then P is a zero of every fλi ∈ G, so that P ∈⋂

λ∈Λ V (Iλ). Conversely, if P is a zero of every fλi ∈ Iλ for λ ∈ Λ, then P ∈ V (
∑

λ∈Λ Iλ).
This proves the equality.

By virtue of the above properties, we can equip An(K) with a topological structure, namely
the Zariski topology, in which the closed sets are precisely the algebraic sets. For n = 1, the
Zariski topology coincides with the finite complement topology on A1(K). For K = R or K = C
and arbitrary n, we find that the standard topologies on R and C are finer than the Zariski
topologies on the respective affine spaces, since polynomial functions are continuous functions
from An(R) or An(C) to R or C respectively. Indeed, we can write V (J) =

⋂
f∈J f

−1({0}), so
that algebraic sets are always closed in the standard topologies on R and C.

2.2.3 The correspondence I

It is possible to introduce a sort of inverse to the correspondence V , that takes a subset X ⊆
An(K) to all polynomials in K[x1, . . . , xn] that vanish on it, namely

I : {X ⊆ An(K)} → {J ⊆ K[x1, . . . , xn] | J is an ideal } : X 7→ I(X) , (3)

with
I(X) = {f ∈ K[x1, . . . , xn] | f(P ) = 0, ∀P ∈ X} . (4)

It is easy to see that I(X) is an ideal of K[x1, . . . , xn], since for every f ∈ I(X) and g ∈
K[x1, . . . , xn], fg also vanishes at the zeroes of f seen as the evaluation map is a homomorphism
of rings. We also have the following properties:

Proposition 2.6. Let X,Y ⊆ An(K). The correspondence I then satisfies the following prop-
erties:

1. If X ⊆ Y , then I(X) ⊇ I(Y ), and

2. X ⊆ V (I(X)). Equality holds if and only if X is an algebraic set, and

3. For any ideal J ⊆ K[x1, . . . , xn], it holds that J ⊆ I(V (J)).

Proof. 1. Every function that vanishes on all points of Y naturally vanishes on all points of
its subsets X, so I(Y ) ⊆ I(X).

5
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2. The ideal I(X) is defined as the set of all polynomials vanishing at all points of X. Then,
for any point P of X, all functions of I(X) vanish at P , so by definition of V , we have
that P ∈ V (I(X)).
Suppose X = V (I(X)). Since I(X) is an ideal, X is an algebraic set by definition.
Conversely, suppose that X is an algebraic set, i.e. there exists an ideal J such that
X = V (J). Then we know that J ⊆ I(X), and by Proposition 2.5 (1), we have V (I(X)) ⊆
V (J) = X. Combined with the reverse inclusion that we have already proven, this results
in the equality X = V (I(X)).

3. Every function f ∈ J vanishes at all the points of V (J) by definition, so that the inclusion
J ⊆ I(V (J)) follows at once.

The inclusion in Proposition 2.6 (3) can be strict: assume for instance that K is not alge-
braically closed, so that there exists a non-constant f ∈ K[x] that does not have roots in K.
We then have V (f) = ∅, implying that I(V (f)) = K[x] trivially. But (f) 6= K[x], since f is
non-constant so that 1 6∈ (f). As such, we have (f) ( I(V (f)).

2.3 Definition of an affine variety

We need to impose one more topological condition on the algebraic sets, i.e. the Zariski closed
subsets of An(K), to be able to give a definition of an affine variety. That condition takes the
form of irreducibility of the algebraic set in question.

2.3.1 Irreducible algebraic sets

We hereby introduce the concept of irreducibility:

Definition 2.7. An algebraic set X ⊆ An(K) is said to be irreducible if there does not exist a
decomposition

X = X1 ∪X2, with X1, X2 ( X

of X as a union of two strict algebraic subsets. If there exists such a decomposition, then X is
said to be reducible.

Two fundamental consequences of this definition are that irreducible algebraic sets are pre-
cisely the zero loci of prime ideals, and that every algebraic set can be written as a union of
irreducible components. This is the content of the Proposition 2.8. We do not prove the second
statement, because it would deviate too much from the main subject of this section, but see
Reid [9, p.61].

Proposition 2.8. 1. If X ⊆ An(K) is an algebraic set, then the following statements are
equivalent:

(a) X is irreducible.

(b) I(X) is prime.

2. If X ⊆ An(K) is an algebraic set, then we can write

X = X1 ∪ · · · ∪Xr (5)

with Xi irreducible for i = 1, . . . , r, and Xi 6⊆ Xj for i 6= j. This decomposition is also
unique.
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Proof. (of the first statement) It is more convenient to prove the contrapositive of the two
implications. Assume therefore that X is reducible, i.e. X = X1 ∪X2 with X1 and X2 strict
algebraic subsets of X. The strictness of the inclusion implies that there exist f1 ∈ I(X1)\I(X)
and f2 ∈ I(X2) \ I(X). Naturally, f1f2 vanishes at all points of X because X is the union of
X1 and X2. Consequently, f1f2 ∈ I(X), but f1, f2 6∈ I(X), so that I(X) is not prime.
Conversely, assume that I(X) is not prime. Then there exist f1, f2 6∈ I(X) with f1f2 ∈ I(X). By
setting I1 = (I(X), f1) and X1 = V (I1), we find X1 ( X, and similarly, with I2 = (I(X), f2) and
X2 = V (I2), we have X2 ( X. This means we already have X1∪X2 ⊆ X. The reverse inclusion
is found by observing that for all P ∈ X, we have f1f2(P ) = 0, and because K[x1, . . . , xn] is an
integral domain, we have f1(P ) = 0 or f2(P ) = 0. As such, we either need P ∈ X1 or P ∈ X2,
so that indeed X = X1 ∪X2.

With the introduction of the irreducibility property of algebraic sets, we now have everything
at hand to give a concise definition of an affine variety.

2.3.2 Affine varieties and their properties

The following definition, when interpreted in the suitably generalized context of algebraic vari-
eties, is fundamental in all of algebraic geometry:

Definition 2.9. An irreducible algebraic subset V ⊆ An(K) is called an affine variety.

By Proposition 2.8 (1), we now know that affine varieties are precisely the zero loci of prime
ideals in K[x1, . . . , xn]. We also have the following equivalent properties of affine varieties:

Proposition 2.10. Consider the Zariski topology on An(K) and let V ⊆ An(K) be closed.
Then the following conditions on V are equivalent:

1. V is an affine variety.

2. Any two open and non-empty subsets U1, U2 ⊆ V have U1 ∩ U1 6= ∅.

3. Any non-empty open subset U ⊆ V is dense in V .

Proof. By the definition of a dense set of a topological space, we find that the third condition
is mainly a restatement of the second, since a dense set is a set that has non-empty intersection
with all the opens in the topological space. As such, we only need to focus on the equivalence
between the first condition and the second. Note that the condition U1 ∩U2 6= ∅ for non-empty
open subsets U1, U2 ⊆ V is equivalent to the condition V 6= (V \U1)∪ (V \U2). V is irreducible
if and only if it is not the union of two proper closed subsets, which by the above consideration
is equivalent to U1 ∩ U2 6= ∅.

2.4 The Nullstellensatz

We now assert, without proof, one of the most central theorems in algebraic geometry: Hilbert’s
Nullstellensatz. A detailed proof of it can be found in Reid [9, p.62]. Before we are able to state
the Nulstellensatz in its entirety, we need to introduce the definition of the radical of an ideal:

Definition 2.11. Let R be a ring, and J ⊆ R an ideal. The radical of J is defined as the ideal

rad J =
√
J = {f ∈ J | fn ∈ J for some n ∈ N} . (6)

We say that an ideal J is radical if rad J = J . Note that the inclusion J ⊆ rad J is always
satisfied.

With the above definition of the radical of an ideal, and along with our knowledge of the V -
and I-correspondences, we have now introduced all the concepts that are needed to formulate
the Nullstellensatz:
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Theorem 2.12 (Affine Nullstellensatz). Let K be an algebraically closed field. We then have
the following:

1. If J ⊆ K[x1, . . . , xn] is an ideal such that J 6= (1), then V (J) 6= ∅.

2. I(V (J)) = rad J for any ideal J ⊆ K[x1, . . . , xn].

The Nullstellensatz shows in particular that the inclusion in Proposition 2.6 (3) is an equal-
ity if J is a radical ideal.

3 Projective varieties

The definitions and results of the previous section were all introduced in the context of the affine
space An(K). A treatment of the same concepts in projective geometry can only be carried out
if we limit our study to ideals of homogeneous polynomials, for otherwise the traditional notions
of algebraic sets and varieties would be ill-defined in KPn. Aside from this restriction however,
all of the familiar definitions and results in An(K) can be brought over to KPn, essentially
verbatim. In this section, we aim to do just that. Additionally, we discuss the concepts of
tangent spaces and non-singularity, from which point forward we can introduce the notion of
the dimension of a projective variety. The latter will prove vital in our approach to the 27-lines
problem.

3.1 Algebraic sets and varieties in KP n

Here we introduce the necessary background theory for the study of zero loci of polynomials
in KPn. This is done through a categorical recovery of the essential results from the previous
section, but now in the context of projective geometry.

3.1.1 Homogeneous ideals

We begin with the preliminary definition of a homogeneous polynomial:

Definition 3.1. A homogeneous polynomial of degree d is a polynomial in K[x0, . . . , xn] for
which every non-zero monomial has degree d. A homogeneous polynomial is also called a form.

It immediately follows from this definition that for any homogeneous f ∈ K[x0, . . . , xn] of
degree d, and any λ ∈ K, it holds that f(λx0, . . . , λxn) = λdf(x0, . . . , xn). It is this property
of homogeneous polynomials that allows for an unambiguous definition of algebraic sets in pro-
jective geometry. Another general property is that every polynomial f ∈ K[x0, . . . , xn] can be

decomposed in a unique way as a sum of homogeneous polynomials, i.e. f =
∑deg f

i=0 fi, with
fi ∈ K[x0, . . . , xn] a homogeneous polynomial of degree i.

The ideals of polynomials we study in the context of projective geometry are the homoge-
neous ideals:

Definition 3.2. An ideal J ⊆ K[x0, . . . , xn] is said to be a homogeneous ideal if every f ∈ J
can be written as a sum of homogeneous polynomials in J , i.e. f =

∑deg f
i=0 fi, with fi ∈ J a

homogeneous polynomial of degree i. This constraint on J is equivalent to the requirement that
J is generated by homogeneous polynomials.

8
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3.1.2 The homogeneous V - and I-correspondences

Entirely analogous to the affine case, but now with the restriction to homogeneous ideals, we
can formulate the homogeneous V -correspondence for KPn:

V : {J ⊆ K[x0, . . . , xn] | J is a homogeneous ideal } → {X ⊆ KPn} : J 7→ V (J) , (7)

with
V (J) = {[(p0, . . . , pn)] ∈ KPn | f(p0, . . . , pn) = 0, ∀f ∈ J} . (8)

Since every f ∈ J can be written as a sum of homogeneous polynomials fi ∈ J of degree
i, the homogeneous correspondence V is well defined. Indeed, if (x0, . . . , xn) ∈ Kn+1 and
(y0, . . . , yn) ∈ Kn+1 are both representatives of the same point P ∈ KPn, then xi = λyi for
some λ ∈ K\{0} and for every i = 0, . . . , n. If every f ∈ J vanishes on (x0, . . . , xn), then because

f =
∑deg f

i=0 fi and fi ∈ J is homogeneous, we find f(y0, . . . , yn) =
∑deg f

i=0 λifi(x0, . . . , xn) = 0.

Definition 3.3. A subset X ⊆ KPn is called a projective algebraic set if there exists a homo-
geneous ideal J ⊆ K[x0, . . . , xn] such that X = V (J).

By Theorem 2.3, every homogeneous ideal in K[x0, . . . , xn] is finitely generated. Conse-
quently, an ideal J ⊆ K[x0, . . . , xn] is a homogeneous ideal if and only if there exist homoge-
neous polynomials f1, . . . , fm ∈ K[x0, . . . , xn] such that J = (f1, . . . , fm). As a result, every
projective algebraic set is the zero locus of a finite number of homogeneous polynomials.

The homogeneous I-correspondence for KPn is defined as the following relation:

I : {X ⊆ KPn} → {J ⊆ K[x0, . . . , xn] | J is a homogeneous ideal } : X 7→ I(X) , (9)

with
I(X) = {f ∈ K[x0, . . . , xn] | ∀ [(p0, . . . , pn)] ∈ X : f(p0, . . . , pn) = 0} . (10)

For every X ⊆ KPn, I(X) is in fact a homogeneous ideal. That is the content of the following
lemma:

Lemma 3.4. Let X ⊆ KPn. Then I(X) is a homogeneous ideal.

Proof. Following the same reasoning as in the affine case, I(X) is an ideal in K[x0, . . . , xn]. We
still have to prove it is homogeneous as an ideal. Therefore, pick any f ∈ I(X) and assume
deg f = d. Write f in its unique decomposition as a sum of homogeneous polynomials, i.e.
f =

∑
fi, with fi ∈ K[x0, . . . , xn] a form of degree i. Choose P = [(p0, . . . , pn)] ∈ X arbitrarily.

Because f(p0, . . . , pn) = 0 if and only if f(λp0, . . . , λpn) = 0 for all λ ∈ K \ {0}, we also find

g(λ) = f(λp0, . . . , λpn) =

d∑
i=0

fi(λp0, . . . , λpn) =

d∑
i=0

λifi(p0, . . . , pn) = 0 , (11)

for all λ ∈ K\{0}. This is only possible if g is the zero polynomial. Consequently, all coefficients
fi(x0, . . . , xn) are zero, so fi ∈ I(X) for all i, since P was arbitrarily chosen in X. As a result,
every polynomial in I(X) can be written as a sum of homogeneous polynomials in I(X), so that
I(X) is a homogeneous ideal.

The V - and I-correspondences satisfy the same properties as in Proposition 2.6, the proofs
of which follow entirely the same reasoning as in the affine case.

9
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3.1.3 Definition of a projective variety

The topological features of V in Proposition 2.5 remain true in KPn, since their proofs can be
carried over mutatis mutandis to the projective context. As such, it is possible to equip KPn

with a topology in the same way as we did for the affine space An(K), i.e. the closed sets are
precisely the projective algebraic sets in KPn. This topological structure on KPn is also called
the Zariski topology. In particular, we can introduce the following definition of irreducibility of
a projective algebraic set:

Definition 3.5. A projective algebraic set X ⊆ KPn is said to be irreducible if there does not
exist a decomposition

X = X1 ∪X2, with X1, X2 ( X

of X as a union of two strict projective algebraic subsets. If there exists such a decomposition,
then X is said to be reducible.

Again, a suitable alteration of Proposition 2.8 also holds in the projective space KPn.
Analogous to the definition of an algebraic variety in An(K), we have the following definition
of a central concept in algebraic geometry, namely a projective variety:

Definition 3.6. An irreducible projective algebraic subset V ⊆ KPn is called a projective
variety.

Likewise, Propositions 2.8 and 2.10 also have a projective counterpart. It is important
to remark that there remains a fundamental difference in the nature of algebraic varieties in
An(K) and in KPn, even though most of the stated properties do have an analogue in the
other geometric space. To illustrate this disparity, we let J = (x0, . . . , xn) be a homogeneous
ideal, and we consider V (J) in An+1(K) and in KPn respectively. In An+1(K) we have V (J) =
{(0, . . . , 0)}, whereas in KPn we have V (J) = ∅. This ideal J is referred to as the irrelevant
ideal, because it is often the only exception to certain propositions and theorems in projective
geometry. One such theorem where the irrelevant ideal clearly demands a modification of the
theory on affine varieties, is the projective counterpart of the Nullstellensatz. A proof is given
by Hulek in [4, p.72]:

Theorem 3.7 (Projective Nullstellensatz). Assume that K is algebraically closed. Then the
following holds:

1. V (J) = ∅ if and only if rad J ⊃ (x0, . . . , xn).

2. If V (J) 6= ∅, then I(V (J)) = rad J .

3.2 The dimension of a projective variety

We now introduce the central notions of the tangent space to a projective variety in a point, and
the non-singularity condition for a (point of a) projective variety. It is with the aid of these two
concepts that we are able to introduce a tractable definition of the dimension of a projective
variety, which will prove convenient in our approach to the 27-lines problem.

3.2.1 Tangent spaces and singularities

For the limited purposes of this paper, we treat the act of taking the partial derivative of
a polynomial as a formal algebraic operation ∂

∂xi
: K[x0, . . . , xn] → K[x0, . . . , xn]. It maps

monomials xni to nxn−1
i , and it satisfies the traditional properties with respect to the additive

and multiplicative operations on K[x0, . . . , xn]. Now consider the following definition:

10
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Definition 3.8. Let V ⊆ KPn be a projective variety and P = [(p0, . . . , pn)] a point in V . For
any homogeneous f ∈ K[x0, . . . , xn], the first order part of f at P is defined as the homogeneous
polynomial

f
(1)
P =

n∑
i=0

∂f

∂xi
(P )xi . (12)

We then define the tangent space to V at P to be the projective algebraic set

TPV =
⋂

f∈I(V )

V (f
(1)
P ) . (13)

Because I(V ) is finitely generated in the Noetherian ring K[x0, . . . , xn], the intersection in
(13) reduces to a finite intersection over the generators of I(V ). Indeed, if I(V ) = (f1, . . . , fm)
with fi ∈ K[x0, . . . , xn] a homogeneous polynomial, then any f ∈ I(V ) can be written as∑m

i=1 gi · fi, with gi ∈ K[x0, . . . , xn]. By the product rule for partial derivatives, and because

P ∈ V and fi ∈ I(V ), we find that the first order part of f reduces to f
(1)
P =

∑m
i=1 gi · f

(1)
i,P .

It then immediately follows that the points on which all f
(1)
P vanish are precisely the points on

which the f
(1)
i,P vanish for i = 1, . . . ,m.

As an addendum to the above definition of the tangent space of a projective variety, we
remark that its affine counterpart in An+1(K) is defined by a substitution of xi − pi for xi in
the expression for the first order part of a polynomial f in (12).

If the projective variety V in the definition of tangent space is given by a principal ideal (f)

for f ∈ K[x0, . . . , xn], then (13) becomes TPV = V (f
(1)
P ). In this specific case, the definition of

singularity (in a point) of V takes on a particularly simple form:

Definition 3.9. Assume V ⊆ KPn is a projective variety defined by a principal ideal (f), i.e.
V = V (f) with f ∈ K[x0, . . . , xn]. A point P ∈ V is said to be a singular point or singularity
of V if all partial derivatives of f vanish at P , that is

∂f

∂xi
(P ) = 0, for all i ∈ {0, . . . , n} . (14)

If this is not the case, P is called a non-singular point. In the same way, a projective variety
is said to be singular if it contains a singular point. Otherwise it is said to be non-singular or
smooth.

Lastly, we remark that the zero locus of the first order part of a polynomial f ∈ K[x0, . . . , xn]

is a linear equation in the variables x0, . . . , xn. As such, V (f
(1)
P ) can also be thought of as a

projective subspace of KPn, so that TPV is a subspace of KPn as well. We then say that the
dimension of the tangent space TPV ⊆ KPn, denoted dimTPV , is equal to the dimension TPV
has as a subspace of KPn. In particular, if P is a singular point of V , then dim TPV = n.

3.2.2 Definition of dimension of a projective variety

With the help of the above definitions, it is now also possible to assign a dimension to a projective
variety in an unambiguous way. We formulate a key result:

Proposition 3.10. Let V ⊆ KPn be a projective variety. For any integer r, the set

S(r) = {P ∈ V | dimTPV ≥ r} (15)

is closed for the Zariski topology on KPn.

11
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Proof. We have to show that S(r) is a projective algebraic subset of KPn. Since the homo-
geneous ideal I(V ) is finitely generated in K[x0, . . . , xn], we can write I(V ) = (f1, . . . , fm) for
homogeneous fi ∈ K[x0, . . . , xn]. The tangent space to V at any point P ∈ V is then given by

TPV =

m⋂
i=1

V (f
(1)
i,P ) .

Now recall from linear algebra that any linear subspace of Kn+1 defined by a system of linear
equations has dimension greater than or equal to r ∈ N if and only if the coefficient matrix of
the system of equations has rank less than or equal to n − r + 1. In this specific context, we
find that P ∈ S(r) if and only if the matrix

J =

(
∂fi
∂xj

(P )

)
i=1,...,m
j=0,...,n

has rank less than or equal to n − r + 1. This in its turn is equivalent to the vanishing of
every (n − r + 2) × (n − r + 2)-minor of J . Thus P ∈ V has a tangent space of dimension
greater than or equal to r if and only if it is a zero of every such minor, and every such minor
constitutes a homogeneous polynomial equation in x0, . . . , xn. As a consequence, S(r) is a
projective algebraic set of KPn, so that it is closed for the Zariski topology on KPn.

The projective algebraic set S(r) is of use in the proof of the following proposition, which
spells out the defining property of the dimension of a projective variety:

Proposition 3.11. Assume V ⊆ KPn is a projective variety. Then there exists a unique
integer r and a dense open subset V0 ⊆ V such that

dimTPV = r for P ∈ V0, and dimTPV ≥ r for all P ∈ V .

Proof. Let r = minP∈V {dimTPV }. Naturally, S(r) = V and S(r + 1) ( V . Now let V0 =
S(r) \ S(r + 1) = {P ∈ V | dimTPV = r}, which is non-empty by the definition of r. Since V0

is equal to V \ S(r + 1) and the latter set is closed for the Zariski topology, we find that V0 is
open in the projective variety V . Then by the projective counterpart of Proposition 2.10, we
have that V0 is dense in V , which ends the proof.

Definition 3.12. Let V ⊆ KPn be a projective variety and let r be the integer in Proposition
3.11. We then define the dimension of V to be r, and we write dimV = r.

The dimension of an affine variety can be defined analogously, but now by way of the di-
mension the tangent space TPV has as an affine subspace of An+1(K).

4 Morphisms of projective varieties

In the previous sections we established the foundations on which algebraic geometry is built,
namely the theory of algebraic varieties and their topological, algebraic and geometric proper-
ties. The natural follow-up to this basic theory is the study of morphisms of algebraic vari-
eties. For the purposes of this paper, we present only the basic definitions concerning functions
between projective varieties, and emphasize some specific structure-preserving properties of so-
called isomorphisms, as these properties will become of great use to us in the proof of the 27-lines
problem. Since we approach the subject of morphisms of varieties from a strictly pragmatical
viewpoint, this section will not delve too deeply into the general theory.

12
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4.1 Rational functions and the function field of a projective variety

We first present the definition of a rational function:

Definition 4.1. A rational function on a projective variety V ⊆ KPn is a partially defined
function f : V 99K K such that there exist homogeneous polynomials g, h ∈ K[x0, . . . , xn] of
the same degree, with f(P ) = g(P )/h(P ) for all P ∈ V where h(P ) 6= 0.

Rational functions are well-defined, since f(P ) does not depend on the particular represen-
tative of P ∈ V as a result of the homogeneity of g and h, and the fact that g and h have
the same degree. However, there are multiple ways of writing f as a quotient of polynomials
on V . We therefore introduce the following equivalence relation: two quotients of polynomials
g, h ∈ K[x0, . . . , xn] and g′, h′ ∈ K[x0, . . . , xn] are equivalent, i.e. g/h ≡ g′/h′, if and only if
h′g−g′h ∈ I(V ). This precisely means that the quotients g/h and g′/h′ define the same rational
function on V , and we have the following definition:

Definition 4.2. The function field of a projective variety V ⊆ KPn, denoted by K(V ), is
defined as the field of equivalence classes

K(V ) =

{
g

h

∣∣∣∣ g, h ∈ K[x0, . . . , xn] homogeneous with deg g = deg h and h 6∈ I(V )

}/
≡ .

(16)

In the definition of a rational function f on a projective variety V , we have left out the
possibility that for every way of writing f = g/h on V , we have h(P ) = 0 for some fixed P ∈ V .
This leads to the following definition:

Definition 4.3. For V ⊆ KPn a projective variety, f ∈ K(V ) and P ∈ V , we say that f is
regular at P if there exists an expression f = g/h with g, h ∈ K[x0, . . . , xn] homogeneous and
of the same degree, such that h(P ) 6= 0. The domain of definition of f , or simply domain of f ,
is the set

dom f = {P ∈ V | f is regular at P} . (17)

A rational function f is called regular if dom f = V .

4.2 Rational maps and morphisms

We naturally extend the definition of rational functions from V to K, to rational maps between
V and the m-dimensional projective space KPm:

Definition 4.4. Assume V ⊆ KPn is a projective variety. A rational map on V is a partially
defined map f : V 99K KPm that is given by rational functions f0, . . . , fm ∈ K(V ), in a way
that for all P ∈ V we have

f(P ) = [(f0(P ), . . . , fm(P ))] . (18)

The regularity of a rational map is then determined by the regularity of the rational functions
that define it:

Definition 4.5. Let V ⊆ KPn be a projective variety. A rational map f : V 99K KPm is said
to be regular at P ∈ V if there exists an expression f = [(f0, . . . , fm)] with fi ∈ K(V ), such
that fi is regular at P for i = 0, . . . ,m, and such that there exists at least one i ∈ {0, . . . ,m}
for which fi(P ) 6= 0.

As before, the domain of a rational map f on V is the subset of V that contains all the
points of V where f is regular. A regular rational map on V is a rational map f on V such
that dom f = V . We also remark that the rational map f = [(f0, . . . , fm)] on V is not uniquely
determined by the rational functions fi ∈ K(V ). Indeed, for any rational function g ∈ K(V ),
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we find that [(gf0, . . . , gfm)] defines the same rational map as f . However, the regularity and
hence the domain of f do depend on the chosen expression for f : if g ∈ K(V ) vanishes at some
P ∈ V , then [(gf0, . . . , gfm)] can never be regular at P by (2) of Definition 4.4, even though
f might be a regular rational map on V . This naturally leads to the following definition of a
morphism of varieties:

Definition 4.6. Let V ⊆ KPn and W ⊆ KPm be projective varieties. A morphism between
V and W is a regular rational map f : V 99KW .

In general, compositions of rational maps may not be well-defined. Exceptions to this rule
are the dominant rational maps, namely rational maps f : V 99K W for which f(dom f) is
dense in W for the Zariski topology. A proof of this statement is found in Hartshorne [2, p.24].

Definition 4.7. Assume V ⊆ KPn and W ⊆ KPm are projective varieties. A rational map
f : V 99K W is said to be birational if it has a rational inverse: there exists a rational map
g : W 99K V such that f ◦ g = iddom g and g ◦ f = iddom f . If f is also regular, then we say f is
an isomorphism, and we say V and W are isomorphic as projective varieties.

It can be shown that for a general birational morphism f : V 99K W , there exist open
subsets V0 ⊆ V and W0 ⊆W such that f |V0 : V0 →W0 is an isomorphism, see Reid [9, p.94].

The essential content of this section, in view of later purposes, is contained in the following
two propositions. We leave the second one without proof, but see Hartshorne [2, p.27].

Proposition 4.8. If f : X → Y is a morphism of projective varieties X ⊆ KPn and Y ⊆ KPm,
and X is irreducible, then f(X) is also irreducible.

Proof. Assume towards contradiction that f(X) is reducible and write f(X) = X1 ∪ X2 with
X1, X2 ( f(X) both algebraic sets. Then X = f−1(X1)∪ f−1(X2) is a union of strict algebraic
subsets of X, contradicting the assumption that X is irreducible.

Proposition 4.9. If f : X → Y is an isomorphism of projective varieties X ⊆ KPn and
Y ⊆ KPm, then dimX = dimY .

5 The 27 lines on a smooth cubic surface

As we have already mentioned in the introduction, a particular application of the study of
projective varieties and their properties is found in a comprehensive proof of the following
theorem:

Theorem 5.1. Every smooth cubic surface S ⊆ CP 3 contains exactly 27 lines.

We now set out to prove this theorem. Throughout this section, we work with a gen-
eral smooth — that is, non-singular — and irreducible cubic surface S ⊆ CP 3 given by a
homogeneous cubic f = f(x0, x1, x2, x3), and try to derive general statements concerning S.
Considerable effort goes into proving that there exists at least one line l ⊆ S, from which point
we can identify the remaining lines using geometric and combinatorial arguments, relying on
the theory that was established in the previous sections. The proof of the existence of a line
on S requires the notion of the Grassmannian of a vector space, along with some useful results
on morphisms between projective varieties. Naturally, a short digression into these subjects is
presented before the main content of this section. We commence however with the explicit case
of the Fermat cubic surface, which aims to serve as an illustrative example to Theorem 5.1 and
a convenient tool to the development of the general theory.

14
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5.1 The Fermat cubic surface as an illustrative case

The Fermat cubic surface, or Fermat surface of degree three, is the projective variety S =
V (x3

0 + x3
1 + x3

2 + x3
3) in CP 3. In this particular case, we are able to count the 27 lines on S

explicitly. The argument presented here is a more detailed treatment of Lemma 11.1 in the
lecture notes of Gathmann [1, p.85].

By a suitable choice of the coordinate system, we can parametrise straight lines ` ⊆ CP 3 by{
x0 = a2x2 + a3x3

x1 = b2x2 + b3x3

, (19)

with a2, a3, b2, b3 ∈ C and up to a permutation of the coordinates. As a result, the substitution
of this parametrisation of ` into the homogeneous polynomial of S yields a condition on the
parameters a2, a3, b2 and b3, that guarantees ` ⊆ S:

f |` = (a2x2 + a3x3)3 + (b2x2 + b3x3)3 + x3
2 + x3

3

= (a3
2 + b32 + 1)x3

2 + (3a2
2a3 + 3b22b3)x2

2x3 + (3a2a
2
3 + 3b2b

2
3)x2x

2
3 + (a3

3 + b33 + 1)x3
3 ≡ 0 .

(20)
Since this condition is to hold for every (x0, x1, x2, x3) ∈ `, we deduce the following system of
equations for the parameters a2, a3, b2 and b3:

a3
2 + b32 = −1

a3
3 + b33 = −1

a2
2a3 = −b22b3
a2a

2
3 = −b2b23

. (21)

At least one of the parameters has to be zero. Indeed, assume towards contradiction that
a2, a3, b2 and b3 are all non-zero. Squaring the third equation and dividing by the fourth equa-
tion then results in a3

2 = −b32, or a3
2 + b32 = 0, which contradicts the first equation. As such, we

can assume that a2 = 0 after a possible interchange of the parameters. This precisely deter-
mines b32 = −1 from the first equation, so that b3 = 0 from the third and fourth equation, and
likewise a3

3 = −1 from the second equation. Conversely, this choice of parameters a2, a3, b2 and
b3 conforms to the system of equations in (21), so that indeed ` ⊆ S.

As a result of the above, we find that a2 = b3 = 0, and that a3 and b2 are the primitive

third roots of −1, i.e. a3 = −ωk and b2 = −ωj with ω = e
2πi
3 and j, k ∈ {0, 1, 2}. This outcome

constitutes a set of nine lines for the particular choice of parametrisation of ` in (19), namely{
x0 + x3ω

k = 0

x1 + x2ω
j = 0

, (22)

with j, k ∈ {0, 1, 2}. To account for the other permutations of the coordinates, we simply
observe that the defining polynomial of the Fermat cubic is symmetric in its variables, so that
the above calculation can be repeated mutatis mutandis for every such permutation, yielding
the final result on the 27 lines on the Fermat surface of degree three:

x0 + x3ω
k = x1 + x2ω

j = 0, j, k ∈ {0, 1, 2}
x0 + x2ω

k = x3 + x1ω
j = 0, j, k ∈ {0, 1, 2}

x0 + x1ω
k = x3 + x2ω

j = 0, j, k ∈ {0, 1, 2}
. (23)
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5.2 Grasmannians, morphisms of varieties and the non-singularity of S

We introduce the concept of the Grassmannian of a vector space, we present a useful result
on morphisms of projective varieties, and we also investigate the consequences of the non-
singularity condition on S. The conclusions we can draw from this will prove vital in the
validation of Theorem 5.1.

5.2.1 The Grassmannian of a vector space V

This subsection is an adaptation of the theory presented by Warner in [14]. The Grassmannian
Gr(k, V ) of the vector space V is generally defined as follows:

Definition 5.2. Let V be an n-dimensional vector space over a field K, and let k ∈ N with
k ≤ n. The Grassmannian Gr(k, V ) is then the set of all k-dimensional linear subspaces of V .

We will often denote the Grassmannian as Gr(k, n), since every finite-dimensional vector
space is isomorphic to any other vector space with the same dimension. A few basic examples
involving vector spaces over C are treated here:

Examples 5.3. (i). If k = 1, then Gr(1, n) is the set of all 1-dimensional linear subspaces of
some n-dimensional vector space. This precisely means that Gr(1, n) contains all the lines
through the origin, i.e. Gr(1, n) = CPn−1 as a set.

(ii). For k = 2 and n = 3, we find that Gr(2, 3) is the set of planes that contain the origin in any
3-dimensional vector space. For each such plane there is a unique line through the origin
that is perpendicular to it, so that this characterization of planes in a 3-dimensional vector
space establishes a bijective correspondence between Gr(2, 3) and Gr(1, 3). Consequently,
we find Gr(2, 3) = CP 2 as a set.

It can be shown that the Grassmannian is a projective variety. We refer to Hudec [3] for
a proof of this fact, seen as a detailed description of it would greatly deviate from the main
content of this section. Of particular interest, in view of later purposes, is the general formula
for the dimension of the Grassmannian as a projective variety. We assume K = C, and V = Cn
from now on.

The dimension of the Grassmannian Gr(k,n)

The choice of a basis {v1, ..., vn} for Cn naturally induces a map from the space of n × k-
matrices over C without zero element, i.e. Cn×k \ {0}, to the collection of all linear subspaces
with dimension up to k, excluding the zero-dimensional linear subspace:

p : Cn×k \ {0} →
k⊔
i=1

Gr(i, n) : M = (mij)i=1,...,n
j=1,...,k

7→ p(M) = span{w1, ..., wk} , (24)

where wj =
∑n

i=1mijvi. As a consequence, p(M) ∈ Gr(r, n) if and only if rank M = r. A
matrix with maximal rank — that is, a matrix of rank k in this case — is said to be of full
rank.

Denote by Cn×kk the set of matrices in Cn×k with full rank. By adopting the usual identifi-
cation Cn×k ∼= Cnk, we find the following lemma:

Lemma 5.4. Cn×kk is a Zariski open subset of Cn×k.

Proof. The set of matrices with full rank is the complement of the set of matrices with rank
strictly less than k in Cn×k. The condition that a n× k-matrix has rank strictly less than k is
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equivalent to the requirement that all of its k × k-minors vanish. As such, the set of matrices
with rank strictly less than k is the zero locus of a collection of polynomials in nk variables over
C, making it Zariski closed in Cnk ∼= Cn×k. Hence its complement, i.e. Cn×kk , is a Zariski open
subset of Cn×k.

Combined with Proposition 2.10, we also find that Cn×kk is dense in Cn×k. Considering the
particular case k = n yields the following corollary:

Corollary 5.5. The set of all invertible n × n-matrices, i.e. GL(n,C), is dense in Cn×n for
the Zariski topology.

The map p in (24) is clearly surjective, since any choice of basis for a linear subspace of
Cn determines a matrix containing the coordinates of said basis elements with respect to the
basis {v1, ..., vn} in its columns. Moreover, as an addendum to the observation that the rank of
the matrix M fixes the particular Grassmannian of which p(M) is an element, we find that the
restriction of p to Cn×kk with codomain Gr(k, n) is still a surjective map.

However, the map p is not necessarily injective: indeed, there are many choices for a basis
of a certain k-dimensional linear subspace. Any change of basis is represented by an invertible
k×k-matrix and vice versa, so that we can guarantee the injectivity of p through the introduction
of an equivalence relation. The following lemma makes this precise:

Lemma 5.6. Given two matrices A,B ∈ Cn×k, we have that p(A) = p(B) if and only if there
exists an invertible matrix C ∈ GL(k,C) such that A = BC.

Proof. If p(A) = p(B) = W , then rank A = rank B = k, and there exist two bases for the k-
dimensional subspace W , say B1 = {u1, . . . , uk} and B2 = {u′1 . . . , u′k}. Therefore, there exists
a C ∈ GL(k,C) such that uj =

∑
ciju

′
i, which represents a change of basis from B1 to B2. We

then have ∑
k

akjvk = uj =
∑
i

ciju
′
i =

∑
i

cij
∑
k

bkivk =
∑
k

∑
i

bkicijvk ,

from which we deduce that A = BC.
Conversely, suppose there exists a C ∈ GL(k,C) such that A = BC. Using the same

notation as above, we have uj =
∑
ciju

′
i. Hence p(A) = p(B).

Given two n×k-matrices A and B, we say A ≡ B if and only if there exists an invertible k×k-
matrix C such that A = BC. By virtue of Lemma 5.6, we can now introduce the well-defined
bijection

p̃ : Cn×kk / ≡ → Gr(k, n) : [A] 7→ p(A) . (25)

If we can show p̃ is an isomorphism of projective varieties, then by Proposition 4.9, the dimen-
sion of the Grassmannian is equal to nk − k2. Indeed, since Cn×kk is a dense open set in Cn×k,
it has dimension nk. Similarly, the dimension of GL(k,C) as a dense open set in Ck×k is equal
to k2. Therefore, we find that the dimension of Cn×kk / ≡ is equal to nk − k2.

Showing that p̃ is indeed an isomorphism of varieties consists of extensive computations
and is generally done through the use of so-called Plücker coordinates. Providing a detailed
description of this method would deviate greatly from the main subject of this thesis. The
reader is therefore referred to chapter 8 of Gathmann [1] for a rigorous proof of the fact that p̃
is an isomorphism of projective varieties. We simply conclude this subsection with the following
result:

dim Gr(k, n) = k(n− k) . (26)
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5.2.2 A result on morphisms of varieties

We now provide the proof for a proposition that will be useful when we show that the cubic
surface S contains at least one line. This proof relies on two other results that are stated in
Shafarevich [11, p.68 and p.77]:

1. For k ∈ N and Y ⊆ KPn a projective variety, the set Vk defined by

Vk = {y ∈ Y | dim f−1(y) ≥ k} (27)

is closed in Y .

2. If Y ⊆ KPn is a projective variety, and X ⊆ Y is a closed projective subvariety of Y with
dimX = dimY , then X = Y .

Proposition 5.7. Let f : X → Y be a morphism between two projective varieties X and Y ,
with dimX = dimY . If there exists a point y ∈ Y such that f−1(y) is finite, then f is surjective.

Proof. Note that f(X) = V0 in the notation of (27), and f(X) is irreducible by Proposition
4.8. We also have that V0 \ V1 is non-empty by the assumption that there exists a y ∈ Y such
that f−1(y) is finite. Since V1 is closed, V0 \ V1 is open and therefore dense in V0. From this,
we conclude dimX = dimV0, so dimX = dim f(X), implying dim f(X) = dimY . Moreover,
V0 = f(X) is closed in Y , such that f(X) = Y by the above. Hence f is surjective.

5.2.3 Consequences of the non-singularity of S

As a result of the non-singularity condition we impose on S, we are able to prove the following
proposition:

Proposition 5.8. 1. Every plane Π ⊆ CP 3 intersects S in one of the following:

(a) an irreducible cubic; or

(b) a conic plus a line; or

(c) three distinct lines.

2. As a consequence, there exist at most three lines in S through any point P ∈ S, and they
are always coplanar.

Proof. 1. The only other possibility for the intersection of a plane Π ⊆ CP 3 with the non-
singular cubic surface S that is not listed above, is the possibility of a multiple line
intersection. In other words, we have to prove that the intersection of Π with S can never
be a multiple line. Assume towards contradiction that the intersection is the multiple line
`, and assume further that a projective transformation fixes Π ↔ x3 = 0 and ` ↔ x2 =
x3 = 0. The assumption that ` is a multiple line of S ∩Π means that f can be written as

f = x2
2α1(x0, x1, x2, x3) + x3α2(x0, x1, x2, x3) , (28)

where α1 is a linear form and α2 is a quadratic form. Adopting this notation for f illus-
trates that S is certainly singular at the points for which x2 = x3 = α2 = 0. These points
are the roots of α2 on the line `, which constitutes a non-empty set, as C is algebraically
closed. Consequently, S contains singular points, contradicting the assumption that it is
non-singular. As such, ` can not be a multiple line.

2. Any line ` ⊆ S through a point P ∈ S is also contained in the tangent space TPS to S
at P , since ` = TP ` and TP ` ⊆ TPS. This tangent space TPS is a plane in CP 3, so that
by the above, it intersects S in at most three distinct lines. Consequently, there are no
more than three lines in S through P . Moreover, they are always coplanar, as they are
contained in the plane TPS.
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The previous proposition will prove useful in the remainder of this section. We also find the
subsequent corollary:

Corollary 5.9. Let Π ⊆ CP 3 be a plane that contains three distinct lines of S. Any other line
n ⊆ S then intersects exactly one of these three lines.

Proof. By the dimension theorem for projective subspaces, we find that for any line n in S, n
and Π either intersect in a single point, or n ⊆ Π. The second case is impossible, since otherwise
the plane Π would contain four distinct lines, contradicting Proposition 5.8 (1). In the first case,
this single point needs to be contained in at least one of the three lines, otherwise it would again
contradict Proposition 5.8 (1). Likewise, the point is also contained in at most one line of S, for
the contrary would oppose the second part of the same proposition. Consequently, n intersects
exactly one of the three lines of Π ∩ S.

5.3 The existence of a line in S

Now that all the auxiliary results have been established, we are able to focus on finding all the
27 lines in S explicitly. We begin by showing that in any cubic surface S, there is at least one
line ` ⊆ S.

Proposition 5.10. Let S ⊆ CP 3 be a cubic surface. Then there exists a line ` ⊆ S.

Proof. Recall that lines in CP 3 admit a one-to-one correspondence to affine planes H through
the origin in A4(C), which in their turn can be regarded as two dimensional linear subspaces
in C4. The lines in CP 3 are therefore parametrised by the Grassmannian Gr(2, 4). As a conse-
quence, there exists a one-to-one correspondence between Gr(2, 4) and the lines ` ⊆ CP 3. By
the dimension formula for the general Grassmannian Gr(k, n) that we have justified above, we
find dim Gr(2, 4) = 4.

Consider the parameter space of all cubic surfaces in CP 3, which we denote by S3. A cubic
surface S ⊆ CP 3 is fully determined by a homogeneous polynomial f of degree three in the
homogeneous coordinates x0, x1, x2, x3. As such, f admits only a limited number of terms, be-
cause of the restrictions due to its degree and homogeneity. Indeed, by way of a combinatorial
argument, we find that there are

(
6
3

)
= 20 third-degree monomials in the variables x0, x1, x2, x3.

Hence the parameter space of all cubic surfaces has dimension 19, since we always lose one
degree of freedom when we fix the coefficients of the defining polynomial f in f = 0. S3 can
therefore be identified with the projective space of dimension 19, i.e. CP 19.

Now define the projective variety Z to be

Z ≡ {(`, S) | ` ∈ Gr(2, 4), S ∈ CP 19, ` ⊆ S} ⊆ Gr(2, 4)× CP 19 . (29)

To determine the dimension of Z, consider the projection on the first coordinate, i.e. the
morphism π1 : Z → Gr(2, 4), so that for a general line ` ∈ Gr(2, 4) we have

dimZ = dim Gr(2, 4) + dimπ−1
1 (`) . (30)

We claim that the dimension of π−1
1 (`) is equal to 15. Indeed, take S ∈ S3 such that ` ⊆ S

and choose the parametrisation of the line ` in a way that it only contains the homogeneous
coordinates x0 and x1. Upon writing S = V (f) and using the condition ` ⊆ S, we find that f |`
satisfies

f |` = α1x
3
0 + α2x

2
0x1 + α3x0x

2
1 + α4x

3
1 ≡ 0 . (31)

This is identically zero if and only if all αi vanish. As a result, we lose four degrees of freedom
for the coefficients of f . By recalling the fact that the dimension of all possible cubic surfaces
is 19, we find that the dimension of π−1

1 (`) is equal to 15. Then by (30), dimZ is equal to 19.
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We explicitly showed that the Fermat cubic surface S0 contains finitely many lines — 27 to
be precise — at the beginning of this section. If we then consider the other projection morphism

π2 : Z → CP 19 , (32)

and use the fact that Z has the same dimension as CP 19 and π−1
2 (S0) is finite, then we know

by Proposition 5.7 that π2 is surjective. Hence given a cubic surface S ⊆ CP 3, there exists a
couple (`, S) ∈ Z such that ` ⊆ S, proving that any cubic surface contains a line `.

5.4 The remaining lines of S

By virtue of Proposition 5.10, we know that S contains at least one line `. Finding the remaining
26 lines is now an undertaking on its own, that we have divided into a few intermediate steps:
first we prove the existence of five pairs of lines in S that are in a specific configuration to
`. We follow up by finding five more lines in a similar configuration to a newfound line m as
the previous ten lines are to `. Finally, the remaining ten lines are found by way of a strictly
geometric and combinatorial argument.

5.4.1 Finding ten more lines

As a first step in the determination of the remaining lines in S, we identify five pairs of new
lines that are categorically structured with respect to the original line ` ⊆ S. That is precisely
the content of the following proposition:

Proposition 5.11. Given a line ` ⊆ S, there exist exactly 5 pairs (`i, `
′
i) of lines of S that

intersect `. These pairs (`i, `
′
i) are structured in a way that

1. for i ∈ {1, ..., 5}, `, `i, and `′i are contained in a plane Πi, and

2. for i 6= j, (`i ∪ `′i) ∩ (`j ∪ `′j) = ∅.

Proof. If Π ⊆ CP 3 is a plane that contains `, then by virtue of Proposition 5.8, the intersection
Π ∩ S contains the line ` and a conic C, which can be either singular or non-singular. If C is
singular, then it is the union of two distinct lines `i and `′i that are different from `, also by
Proposition 5.8. We thus have to prove that there exist exactly five distinct planes Πi for which
C is singular. This then proves the existence of five pairs of lines (`i, `

′
i) in S, as well as the first

statement.

We can assume that ` ↔ x2 = x3 = 0 after a suitable projective transformation. Since
` ⊆ S, we are allowed to write the defining polynomial f of S as

f = Ax2
0 +Bx0x1 + Cx2

1 +Dx0 + Ex1 + F , (33)

with A,B,C,D,E, F ∈ C[x2, x3]. Because f is a homogeneous cubic polynomial over C, we
find that A,B and C are linear forms, D and E are quadratic forms, and F is a cubic form. We
then observe that the singularity condition on C is equivalent to the condition that for every
P ∈ Π, the homogeneous fifth degree polynomial

∆(x2, x3) ≡ 4 · det

∣∣∣∣∣∣
A B/2 D/2
B/2 C E/2
D/2 E/2 F

∣∣∣∣∣∣
= 4ACF +BDE −AE2 −B2F − CD2

(34)

vanishes at P . This is because any plane Π that contains ` is of the form Π↔ µx2 + γx3 = 0,
with µ and γ not both equal to zero. Depending on whether µ or γ is different from zero (if
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they are both non-zero, then we can choose any of the two), C can be brought in explicit form.
Take for example µ 6= 0, so that we can divide both sides of the equation of Π by µ. Then
Π ↔ x2 = λx3 for some λ ∈ C, so that f |Π = x3Q(x0, x1, x3), since ` ⊆ S and with Q the
equation for C. Upon comparison with (33), we find that

Q(x0, x1, x3) = A(λ, 1)x2
0 +B(λ, 1)x0x1 + C(λ, 1)x2

1

+D(λ, 1)x0x3 + E(λ, 1)x1x3 + F (λ, 1)x2
3 .

(35)

For every P ∈ Π, ∆ reduces to 4x5
3 times the determinant of the defining matrix of C in (35),

since x2 = λx3 for such P . Consequently, the vanishing of ∆ at every point of Π is equivalent
to the singularity of C. The case γ 6= 0 leads to an entirely similar result, with the roles of the
coordinates x2 and x3 exchanged.

Because C is algebraically closed, ∆ has exactly five roots, counted with their multiplicities.
Since every such root corresponds to a plane Π, we have to show that ∆ admits only simple
roots. The projective transformation above can be adjusted so as to permit Π1 ↔ x2 = 0 as a
root of ∆, and with ` ↔ x3 = 0, `1 ↔ x0 = 0 and `′1 ↔ x1 = 0 as the lines of S in Π1 in the
case they are not concurrent, or with ` ↔ x3 = 0, `1 ↔ x0 = 0 and `′1 ↔ x0 = x3 as the lines
of S in Π1 when they are in fact concurrent. We now distinguish between these two cases:

1. First case: the lines of Π1∩S are not concurrent. Our aim is to prove that ∆ is not
divisible by x2

2. Because `, `1, `
′
1 ⊆ S, we find that f = x0x1x3 + x2g, with g a quadratic

form. Upon comparison with (33), we find that B = x3 + ax2, with a ∈ C, and that
x2 | A,C,D,E, F . This precisely means that

∆ ≡ −x2
3F mod x2

2 . (36)

Additionally, the point P = (0, 0, 0, 1) is contained in S. But the non-singularity condition
of S at P then requires that F contains a term x2x

2
3, so that x2

2 does not divide F , and
x2

2 - ∆. Consequently, the plane Π1 ↔ x2 = 0 is a simple root of ∆. This proves the first
part of Proposition 5.11 in the case `, `1 and `′1 are not concurrent.

2. Second case: the lines of Π1 ∩ S are concurrent. Again, since `, `1, `
′
1 ⊆ S, we

can write f = x0x3(x0 − x3) + x2g = x2
0x3 − x0x

2
3 + x2g, with g a quadratic form. By

comparing this expression for f with the expression in (33), we find A = x3 + ax2 and
D = −x2

3 + bx2x3 + cx2
2, with a, b, c ∈ C. Furthermore, we have x2 | B,C,E, F , so that

∆ ≡ −x4
3C mod x2

2 . (37)

This immediately proves that ∆ is not divisible by x2
2, since C is a linear form in x2 and

x3. Consequently, Π1 ↔ x2 = 0 is also a simple root in the case `, `1 and `′1 are concurrent.

The second part of the proposition is proven by the simple observation that Proposition 5.8
(2) guarantees that two lines contained in distinct planes Πi and Πj have to be disjoint. Indeed,
if this were not the case, then their intersection point would also be contained in `. But ` and
the lines of Πi and Πj are not coplanar, so this is impossible. This then proves the second
statement.

We also present an immediate consequence of the above proposition:

Corollary 5.12. There exists a disjoint pair of lines (`,m) in S.

Proof. Write ` = `1 and m = `2 with the notation of the above lemma. Then by virtue of that
same lemma, ` and m are disjoint lines in S.
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5.4.2 The last lines

We call a line n ⊆ CP 3 a transversal of a line ` if ` ∩ n 6= ∅. The remaining sixteen lines of S
are then found with the help of the following lemmas, the first of which is stated without proof,
but see Lazarus [6, p.12]:

Lemma 5.13. For any non-singular quadric Q ⊆ CP 3, Q contains an infinite number of lines.
These lines can be divided into two disjoint sets F1 and F2, so that:

1. all lines in F1, respectively F2, are pairwise disjoint, and

2. for every `1 ∈ F1 and `2 ∈ F2 it holds that `1 ∩ `2 6= ∅, and

3. Q =
⋃
`i∈F1

`i =
⋃
`i∈F2

`i.

Lemma 5.14. Let `1, . . . , `4 be disjoint lines of S ⊆ CP 3. Then these four lines do not lie on
any quadric Q ⊆ CP 3, and they have either one or two common transversals.

Proof. There exists a unique smooth quadric Q such that `1, . . . , `3 ⊆ Q. Indeed, by a suitable
change of coordinates, we can assume that the lines have equations `1 ↔ x0 = x1 = 0, `2 ↔
x2 = x3 = 0 and `3 ↔ x0 = x2, x1 = x3. Then these three lines are clearly disjoint from each
other, and they are all contained in the quadric Q = V (f) = V (x0x3 − x1x2), since f |`i = 0
for i = 1, . . . , 3, and this is the only quadric for which this is possible. However, `4 6⊆ Q, since
otherwise Q ⊆ S, which contradicts the irreducibility of S.

By Bézout’s theorem for hypersurfaces in higher dimensions, and by `4 6⊆ Q, we know that
the intersection of `4 with Q is a finite, but non-empty set of points `4 ∩Q = {P1, P2}, with the
possibility P1 = P2. Additionally, any transversal n of `1, . . . , `3 must be contained in Q, again
by Bézout’s theorem, seen as n intersects Q in at least three distinct points. The number of
transversals of `1, . . . , `4 is then the number of lines of Q through P1 and P2 respectively, since
these also intersect `1, `2 and `3 by Lemma 5.13 (2). By the remainder of the same lemma,
there is exactly one line through P1 that is also contained in Q. Likewise, there is exactly one
line of Q through P2, with the possibility that this line coincides with the line through P1 if
either P1 = P2, or if the line through P1 and P2 is already contained in Q. Therefore `1, . . . , `4
admit exactly one or two common transversals.

We now have everything at our disposal to find the 27 lines of S and finish off the proof to
Theorem 5.1. By Corollary 5.12, there exist two disjoint lines ` and m in S. An application
of Proposition 5.11 to the existing line ` learns that there exist exactly five pairs (`i, `

′
i) that

intersect `, in a specific configuration to ` as is prescribed by the proposition. Since m ⊆ S
is disjoint from `, we know that m differs from all the `i and `′i. By Corollary 5.9 then, m
intersects Πi in either a point on `i or a point on `′i for every i = 1, . . . , 5, but it never intersects
both. We can then renumber the pairs (`i, `

′
i) so that m meets `i for i = 1, . . . , 5.

Another application of Proposition 5.11, now to m, shows that there exist exactly five more
distinct lines `′′i ⊆ S that intersect m, since the lines `i are already accounted for. These `′′i also
differ from the `′i, since the former intersect m and the latter do not. To sum it up, we now
have two disjoint lines, ` and m, and five triples (`i, `

′
i, `
′′
i ) so that ` is coplanar with `i and `′i

for i = 1, . . . , 5, and m is coplanar with `i and `′′i for i = 1, . . . , 5. We have already found 17
lines at this point.

As for the configuration of the `′′i with respect to the `j and `′j for i 6= j, we observe the
following: by Proposition 5.11 (2) on m, `′′i ∩ `j = ∅ for i 6= j. On the other hand, `′′i and `′j
have non-empty intersection for i 6= j. Indeed, by Corollary 5.9, the line `′′i intersects Πj in
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either `, `j or `′j . But `′′i can not intersect ` since `′′i differs from the `i and `′i, which are the
only lines of S intersecting `, and `′′i also does not intersect `j for i 6= j by the argument before.
Hence `′′i intersects `′j for i 6= j.

The remaining ten lines are then found with the help of this last proposition:

Proposition 5.15. With the configuration of the lines `,m and (`i, `
′
i, `
′′
i ) for i = 1, . . . , 5 as

established above, we have the following:

1. If n ⊆ S is any other line than the seventeen above, then n meets exactly three out of the
five lines `1, . . . , `5.

2. Conversely, given any choice {i, j, k} of three distinct elements of the set {1, 2, 3, 4, 5},
there exists a unique line `ijk ⊆ S meeting `i, `j and `k that is different from the seventeen
lines above.

Proof. 1. The line n ⊆ S can not meet four lines out of `1, . . . , `5, since n would then be a
common transversal of these four lines, of which we know ` and m already are common
transversals. Then by Lemma 5.14, either n = ` or n = m, and both considerations
contradict the assumption that n differs from the already established lines.

On the other hand, n can not meet two lines or less out of `1, . . . , `5. Indeed, assume
towards contradiction that it does. By Corollary 5.9 and Proposition 5.11, for every i =
1, . . . , 5, n either meets `i or `′i, although never both. Consequently, if nmeets two or less of
the `i, it must meet three or more of the `′i, namely these with the complementary indices.
By a renumbering of the (`i, `

′
i, `
′′
i )-triples, we can assume that n either meets `′1, . . . , `

′
5,

or n meets `1, `
′
2, . . . , `

′
5, or n meets `1, `2, `

′
3, `
′
4, `
′
5. But we have already illustrated that `

and `′′1 are common transversals of `1, `
′
2, `
′
3, `
′
4 and `′5. In either of the above three cases, n

meets at least four of these latter five lines, so that by Lemma 5.14, n = ` or n = `′′1. Both
equalities contradict the assumption that n is different from the lines that were already
constructed, so n can not meet two lines or less out of `1, . . . , `5. By combining with what
we already found above, n must meet exactly three out of the five lines `1, . . . , `5.

2. An application of Proposition 5.11 to the line `i learns that there are exactly ten lines
meeting `i. The lines `, `′i,m and `′′i are already accounted for, and the remaining six
lines differ from the `j , `

′
j and `′′j for i 6= j by Proposition 5.11 (2) and the description

of the configuration of the `′′j with respect to the `i above. As a consequence of the first
statement of this proposition, each of the remaining six lines must meet exactly two lines
out of the set {`j | j = 1, . . . , 5, and j 6= i}. There are

(
4
2

)
= 6 possibilities for this to

happen, and so the six lines that result from this, call them `ijk, must form the remaining
six lines that intersect `i.

Proposition 5.15 (2) guarantees that there exist at least
(

5
3

)
= 10 more lines `ijk on top of the

seventeen lines that were already constructed before, with the unique property of intersecting
`i, `j and `k. By the first part of the same proposition, we now know that these ten lines are
the only lines that remained to be found in S, so that S contains exactly 27 lines. This finally
ends the proof of Theorem 5.1.

6 Outlook and conclusion

In this last section, we discuss multiple subjects that are related to the theory presented in
this thesis, and that can be considered as logical continuations to the introductory algebraic
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geometry that this text offers. We also formulate a final conclusion on this specific study of
algebraic geometry.

Generalizing the foundations of algebraic geometry

Throughout the larger part of this text, we have built the theory of algebraic geometry by
working over arbitrary fields, and only the last section applied this theory to the specific case of
the algebraically closed field of the complex numbers. There are various reasons why this gen-
erality of the theory is to our advantage, and why it is meaningful to consider non-algebraically
closed fields as well. As a way of motivating this assertion, we can look at the modus operandi in
algebraic number theory, wherein the framework of algebraic geometry over the field Q is used
to solve an abundance of problems. A famous example that we have already mentioned in the
introduction is Fermat’s Last Theorem: integer solutions to the defining equation xn + yn = zn

for n ≥ 3 correspond to rational points on the variety V (xn0 + xn1 − xn2 ) in CP 2. Other possible
generalisations constitute defining an algebraic variety in a more abstract manner, which does
not necessarily admit a representation in an affine or projective space, or to omit the require-
ment that varieties should be irreducible [2, p. 55-59].

These generalisations are all part of the approach to algebraic geometry that was introduced
by Alexander Grothendieck in the previous century. The observation that affine varieties corre-
spond to finitely generated integral domains over a field, led Grothendieck to consider varieties
over general abelian rings. This contemplation then famously culminated in the introduction
of schemes, and is often pointed out to be a revolution in the study of algebraic geometry in
the previous century. The theory of schemes is intricately related to various other branches of
mathematics, such as Galois theory and commutative algebra, and due to its technical depth
and reach, it is currently considered to be the most universal foundation for algebraic geometry
[5]. As another motivation for studying schemes as the central algebraic geometric objects, we
point out that our treatment of the 27-lines problem can be greatly reduced in length if we
adopt the results that stem from this abstracted theory, see for example Hartshorne’s one page
long proof of the same problem in [2, p.402].

Enumerative geometry

In the last section, we showed that there are exactly 27 lines contained in a smooth cubic
surface in CP 3. This is an example of a general problem that arises in enumerative geometry,
a particular branch of algebraic geometry concerned with counting the number of solutions to
certain geometric problems. We hereby present several options for a possible continuation of
our study in the field of enumerative geometry.

A first possibility is to drop the restriction that the cubic surface should be smooth. If,
for example, the cubic only contains isolated singularities, then one can show that the surface
contains at least one line, but that the total number of lines is strictly less than 27, as is asserted
in Pannekoek [7].

Our extensive discussion of the lines in a smooth cubic surface naturally leads to the ques-
tion if similar results hold for smooth surfaces in CP 3 that are given by polynomials with a
higher degree. For instance, we can consider smooth surfaces of which the defining polynomial
has degree four or five, conveniently named quartics and quintics respectively. Beniamino Segre
has proven in [10] that there is always maximum of 64 lines contained in a quartic surface, and
this upper bound is sharp, since it is generally known that the Schur quartic admits exactly 64
lines, see Rams [8]. It has also been proven that the maximum number of lines contained in a
smooth quintic is at most 127, but whether this is a sharp bound or not is yet unproven. As
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such, a possible continuation of our study in enumerative geometry could constitute research of
these upper bounds and their underlying theory.

Conclusion

In this thesis, we have demonstrated the extensive reach of algebraic geometry in mathemat-
ics, and that it is intricately related to algebra and topology. In particular, we have illustrated,
with the help of the notions of algebraic varieties and their algebraic and topological structure,
that a profound understanding of algebra and topology allows for an accurate description of
central concepts in geometry, and vice versa. We have shown the potential of algebraic geometry
as a framework for projective geometry by way of a tractable proof of the fact that all smooth
cubic surfaces contain exactly 27 lines, and we have given the reader and ourselves an incentive
to probe further into the matter of algebraic geometry.
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[7] René Pannekoek. Parametrizations over Q of cubic surfaces. PhD thesis, Faculty of Science
and Engineering, 2009.
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