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Abstract

Future detections of gravitational waves originating from binary neutron star mergers
or core-collapse supernovae offer the potential to gain unprecedented insights into the
structure of matter at densities far beyond those probed by Earth-based experiments.
In order to be able to identify the correct equation of state of matter, a template
bank of waveforms has to be generated by general relativistic magnetohydrodynamics
simulations. However, state-of-the-art solvers are slowed down by the conservative-to-
primitive transformation, a central algorithmic step in any relativistic hydrodynamics
solver. We investigate the potential of three machine learning algorithms to improve
existing conservative-to-primitive schemes. We find that fully replacing either the
conservative-to-primitive transformation or the evaluation of the equation of state
by a machine learning model is unable to provide any significant advantage. We
propose a novel, hybrid scheme that unifies machine learning and state-of-the-art
schemes, resulting in an acceleration of numerical solvers by up to 25% for general
relativistic magnetohydrodynamics simulations involving microphysical equations of
state, without compromising accuracy or robustness.
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Chapter 1

Introduction

Ever since humans can stand on their two feet and gaze into the night sky, we
have wondered about the origin of our existence and the matter that surrounds
us. This fundamental question has ignited the curiosity of countless generations
throughout the ages. Over time, we have come to understand that matter is made
out of atoms, which themselves consist of electrons and nuclei. Yet, we still lack
a complete understanding of the origin of the wide variety of nuclei observed in
nature. The intricate secrets of the theory of nuclear physics are told by the most
cataclysmic events in the cosmos, the explosions of massive stars. These explosions,
known as supernovae, achieve extremely high densities and temperatures, leading to
the creation of heavy elements. Supernovae leave behind a collapsed core, a neutron
star, which is one of the densest known objects in the universe.

While astronomers have pointed their telescopes at supernovae and neutron stars
in the past, the mechanisms that trigger supernovae and the composition of neutron
star matter are difficult to grasp from electromagnetic radiation alone, and other
observational channels are required to complete the picture. Gravitational waves
provide such a novel observational channel. Predicted by Albert Einstein’s famous
theory of gravity, general relativity, gravitational waves are a form of radiation
emitted by violent, dynamical events which travel as ripples through the fabric of
space-time. Unlike electromagnetic radiation, gravitational waves are unobstructed
by matter and can travel all the way from the inner regions of supernovae and
neutron stars towards Earth. Gravitational waves have been directly observed for
the first time in 2015, almost a century after their prediction. A new emerging field
of astrophysics, known as multi-messenger astrophysics, tries to gain more insight in
the nature of matter at high densities by combining different observational channels,
including gravitational waves.

Gravitational waves are detected by relying on the procedure of matched filtering,
where an incoming signal is compared to a large bank of templates of waveforms,
computed for different parameter settings of the source system. In case the source
is a binary system of compact objects that spiral toward each other and eventually
collide, these parameters can e.g. specify the masses of the objects and their rotations
relative to each other and their plane of motion. For black holes, these large template
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1. Introduction

banks have been constructed in the past and the parameter space that determines
the waveform is relatively well-understood. For events involving neutron stars and
supernovae, the description and behaviour of matter at high density influences the
resulting waveform. Therefore, this description has to be taken into account when
generating the template banks used in the matched filtering process. Theoretical
models account for this microphysical description by providing relations among the
physical variables, which is known as the equation of state.

Unfortunately, the equation of state of neutron stars is not yet known, since Earth-
based experiments are unable to probe the high density regime realized in neutron
stars and supernovae. Currently, there exist different propositions of the equation of
state, originating from various theoretical nuclear physics frameworks. Therefore,
the waveforms of mergers of neutron stars and supernovae have a significant amount
of variance due to the unknown equation of state. By analyzing the gravitational
waves originating from events at high density, such as mergers of neutron stars
and supernovae, we can gain valuable insights into the properties of dense nuclear
matter. In particular, by comparing the observed gravitational wave signals to the
theoretically predicted waveforms, we hope to identify the equation of state in the
near future.

As such, theoretical models of relativistic hydrodynamics have to provide template
banks of waveforms for each proposed equation of state. Since the theoretical models
are intractable to compute analytically, one has to resort to numerical simulations
of the systems of interest to compute the waveform. However, to obtain accurate
waveforms, effects occurring at different length scales have to be properly taken into
account, resulting in computationally demanding simulations. As a result, obtaining
these template banks seems to be infeasible with the current state-of-the-art numerical
solvers.

Therefore, to make progress in the field of multi-messenger astrophysics, we
require optimized and accelerated relativistic hydrodynamics solvers. A central step
in any relativistic hydrodynamics solver is a transformation from the conserved
variables, which are the fluid variables measured in the laboratory frame, to the
variables measured in the rest frame of the fluid, the primitive variables. This
conservative-to-primitive transformation is a numerically expensive step, especially
for simulations that model the microphysics of the system of interest. Moreover,
this transformation has to be applied to each grid point and for every time step.
To generate accurate waveforms more efficiently, a good starting point would be to
optimize this crucial algorithmic step.

In this thesis, we explore the application of machine learning to improve the
efficiency of the conservative-to-primitive transformation. Machine learning, a subfield
of artificial intelligence, studies the development of numerical algorithms that are able
to accomplish predefined tasks by learning from examples. The goal of a machine
learning algorithm is to train a model that is able to extract meaningful patterns
from provided data. After a machine learning model has been trained, it can be
used to predict the values for similar, unseen cases. We aim to leverage this learning
capability to construct a machine learning algorithm that is able to accelerate the
conservative-to-primitive transformation.
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1.1. Outline

1.1 Outline
This work is as organized as follows. In Chapter 2, we delve deeper into the motivation
of our work and provide a more detailed discussion on the prospects and challenges
of the field of gravitational waves and multi-messenger astrophysics.

In Chapter 3, we present the theoretical framework used to obtain waveforms of
gravitational waves originating from neutron stars and supernovae, namely general
relativistic magnetohydrodynamics. At the same time, we discuss the conservative-
to-primitive transformation in more detail. Finally, this chapter discusses Gmunu, the
numerical solver for which we designed and implemented machine learning algorithms.

Chapter 4 then provides an introduction to machine learning and the techniques
that we have used to tackle the conservative-to-primitive problem. Our work mainly
considered deep learning and artificial neural networks, such that we provide a
comprehensive introduction to these methods. Since many hydrodynamics solvers
are written in the Fortran programming language due to its efficiency for scientific
computing, we present an extensive overview and discussion of using deep learning
in Fortran.

In Chapter 5, we present three proposed solutions that aim to accelerate the
conservative-to-primitive transformation. We discuss the numerical experiments we
have conducted in the Gmunu solver to benchmark the performance of these methods
against existing algorithms. Finally, Chapter 6 provides a discussion of our work and
reflects on possible future extensions of the methods proposed.
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Chapter 2

Gravitational waves

The most accurate theory of gravity to date is Albert Einstein’s theory of general
relativity, first formulated in 1915. Central to the theory of general relativity are the
Einstein equations, which describe the relation between the curvature of space-time
and matter. These equations predict the existence of gravitational waves, which
were directly observed for the first time in 2015 and can deliver new insights into
fundamental physics in the near future.

In this chapter, we aim to briefly introduce the basic concepts underlying the
theory of general relativity and gravitational waves, as well as the prospects and
challenges for the near future.

2.1 General relativity and the Einstein equations

The general theory of relativity, or simply general relativity (GR), is a theory of
gravity that emerged out of the unification of gravity (as described by Newton) and
the principles of electrodynamics and special relativity. Since a thorough introduction
to GR is beyond the scope of this thesis, readers are referred to Refs. [1, 2] for more
details and mathematical rigour.

Newton’s theory of gravity assumed space and time to be separate and absolute
concepts. In the theory of relativity, these notions are no longer absolute, but
become relative to a specific observer, hence the origin of the name of the theory.
Moreover, the clear separation between space and time disappears as well, and all
four coordinates are collectively used to describe the universe as a space-time. That
is, time t and space xi, where i = 1, 2, 3 for three-dimensional spaces, are merged into
one coordinate vector xµ = (t, xi), where µ = 0, 1, 2, 3 accounts for all space-time
coordinates. By convention, Latin indices refer to spatial components, whereas Greek
indices refer to all space-time components. Vectors which carry four indices are hence
also referred to as four-vectors.

In the theory of relativity, space-time is mathematically described as a manifold.
These manifolds are equipped with a metric gµν , which measures distances in space-
time and describes the local geometry of the manifold. Moreover, it defines a
symmetric bilinear transformation, the inner-product, on the space of four-vectors.
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2. Gravitational waves

The inverse metric, which is the inverse of gµν viewed as a matrix, is written with
upper indices gµν . Without going into further details, we remark that indices of
vectors and tensors (i.e., multi-dimensional vectors) can be raised or lowered using
the metric, viz.

Vµ = gµνV ν , V µ = gµνVν , (2.1)
where repeated indices are summed over, a convention known as the Einstein sum-
mation convention, viz.

VµV µ ≡
3∑

µ=0
VµV µ = V0V 0 + V1V 1 + V2V 2 + V3V 3 . (2.2)

Using the metric, the inner-product can also be computed as

VµV µ = VµgµνVν =
∑
µ,ν

gµνVµVν =
∑
µ,ν

gµνV µV ν . (2.3)

We will encounter such an inner-product, for instance, in the computation of the
square of the velocity and the Lorentz factor in relativistic hydrodynamics.

Importantly, manifolds in GR can curve and are not necessarily rigid and fixed.
Their curvature can be expressed as a function of the metric and its derivatives,
such that the metric fully specifies the space-time. For instance, the simplest metric
consistent with relativity is the so-called Minkowski metric (usually denoted by ηµν

rather than gµν) which describes a flat space-time without any curvature:

gµν = ηµν ≡ diag (−1, +1, +1, +1) . (2.4)

Here, the positive eigenvalues are related to the spatial components, which gives the
well-known Euclidean geometry, and the first entry refers to the time component.

Since manifolds in GR are not rigid, the metric is a dynamical quantity and
obeys its own evolution equations. The central idea underlying these equations is
neatly summarized by a famous quote ascribed to John Wheeler: “Space-time tells
matter how to move, matter tells space-time how to curve” [3]. That is, GR describes
the interplay between the curvature of space-time and the matter and energy sources
present in the space-time. This relation is formalized by the famous Einstein field
equations (or simply Einstein equations)

Rµν −
1
2Rgµν = 8πG

c4 Tµν , (2.5)

where we explicitly wrote the physical constants for clarity. The Einstein equations
constitute a set of sixteen non-linear, coupled differential equations, although not
all sixteen components are independent of each other. The left hand side involves
the metric, along with the Ricci tensor Rµν and the Ricci scalar R, which are two
quantities related to the curvature of the manifold and which can be expressed in
terms of the metric. In short, the left hand side hence refers to space-time and its
curvature. The right hand side, on the other hand, involves the energy-momentum
tensor Tµν , which accounts for the energy and matter sources in the space-time.
Readers who are unfamiliar with the mathematics of GR are encouraged to remember
Eq. (2.5) simply as the mathematical translation of Wheeler’s quote.
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2.2. Theory of gravitational waves

2.2 Theory of gravitational waves
The Einstein equations provide a mathematical framework in which we can study
the interaction between matter and space-time for different systems. Of particular
interest to us are systems that, through their dynamics, emit a type of radiation
throughout space-time that is measurable far away from the source. This gravitational
radiation, known as gravitational waves (GWs), was theoretically formulated shortly
after the birth of GR itself and is currently being developed as a new and exciting
experimental field. We briefly introduce GWs based on Refs. [4, 5].

Since it is infeasible to solve the Einstein equations analytically except for a
handful of systems, GWs are best understood by incorporating approximations. For
instance, one can assume that the background space-time is flat (with metric given
by Eq. (2.4)) such that the GWs add a small perturbation hµν to this background,
viz.

gµν = ηµν + hµν , |hµν | ≪ 1 . (2.6)

Rewriting the Einstein field equations up to first order in the perturbation, the
solution of the GW can be written as

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos (ω(t− z)) , (2.7)

which represents a single plane wave travelling along the z-axis of the coordinate
system. The wave has two polarizations, referred to as the plus and cross polarizations,
with amplitudes h+ and h×, respectively. Higher-order corrections can be obtained
with the so-called post-Newtonian formalism. This gives a multipole expansion,
which yields an expansion in the parameter v/c, where v is the typical velocity of
the source and c the speed of light.

2.3 Detections and matched filtering
After briefly discussing the theory constituting GWs, we present an informal discussion
of how GWs can be detected. For this, assume that our GW detector consists of a ring
of test masses situated on a circle in the (x, y)-plane of a coordinate system. Suppose
that a GW travelling along the z-direction passes over our detector. The waveform,
in the linearized theory, is given by Eq. (2.7). The h+, respectively h×, polarization
of the GW distorts the ring into a periodic plus-like shape, respectively cross-like
shape, hence explaining the name of the polarizations. These deformations are shown
schematically in Figure 2.1. If the displacement of the particles is δL and the original
separation is L, the strain of a GW is δL/L and is precisely the quantity that GW
detectors aim to detect. Actual detectors do not rely on a ring of test particles,
but are interferometers which send light beams through two perpendicular arms.
The detector outputs the phase shift of the light beams, recombined after travelling
through the two arms, which depends on the relative distances of the two arms.
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2. Gravitational waves

Figure 2.1: Deformations of a ring of test masses acting as an idealized detector system.
The deformations due to the two GW polarizations h+ and h× are shown at various phases.
Figure taken from [5].

Currently, the most sensitive interferometers are the LIGO detectors in Hanford
and Livingston [6], that of Virgo in Italy [7] and Japan’s KAGRA interferometer [8],
collectively organized in the LVK collaboration.

Therefore, realistic GW detectors output a time series, the observed signal s(t),
which is the sum of the strain and noise:

s(t) = h(t) + n(t) . (2.8)

Extracting the GW strain from the signal is a challenging task, since the detectors
are flooded by a multitude of noise sources, ranging from quantum noise coming
from the lasers to seismic noise. In fact, in realistic scenarios, the noise dominates
over the actual GW signal. We briefly describe how GW signals are detected in
practice. To be able to extract the GW signal, we need a reasonable guess of the
waveform h(t). GWs can be detected through the principle of matched filtering. In
this process, we compute the quantity

ŝ =
∫ +∞

−∞
s(t)K(t) , (2.9)

where K is some filter function. Signals are characterized by their signal-to-noise
ratio (SNR) ρ = S/N , where S is the expected value of ŝ when a GW is present and
N is the root-mean-square value of ŝ when the signal does not contain a wave. Hence,
a signal should result in a sufficiently high SNR in order to confidently identify the
presence of a GW. One can show that the filter function that maximizes the SNR
when the signal contains a specific waveform is a function of the waveform itself. In
other words, in using matched filtering to detect GWs, the best filter is provided by
the wave itself.

Therefore, matched filtering requires prior knowledge on the waveforms h(t).
These have to be computed from theoretical frameworks and depend on several
parameters, such as the distance to the source, or the masses of compact objects in a
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2.3. Detections and matched filtering

binary system et cetera. A waveform for a specific combination of parameters hence
gives a template h(t; θ) for the GW signal and filter to be used in the detection. To
detect a GW and estimate the parameters of its source, we have to rely on large
template banks. However, since GR is a complicated theory, constructing these
template banks is infeasible analytically, and one has to rely on numerical simulations.
For some systems, such as neutron stars and core-collapse supernovae, this requires
us to model physics on a wide range of scales. Moreover, the dynamics of these
systems depends on unknown physics, which increases the difficulty of creating a
template bank.

The first direct1 detection of GWs, and the dawn of gravitational wave astrophysics
as an experimental field, was reported for the first time in 2016 [10]. The observed
signal, called GW150914, is shown in Figure 2.2, after applying a few postprocessing
steps.2 The signal originates from a binary system of black holes that spiral towards
each other, which increases the frequency and amplitude of the GW strain, and
eventually merge into one, final black hole, which happens at t = 0 in Figure 2.2. As
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Figure 2.2: The postprocessed GW150914 signal with time of merger at t = 0.

a small demonstration of matched filtering, we determine an unknown parameter,
namely the masses of the black holes. For simplicity, we assume that the spins of the
black holes are aligned and that the black holes have an equal mass M , which we
express in numbers of solar masses M⊙. Figure 2.3 shows the theoretical waveforms
for three different values of the parameter M , computed by a phenomenological
model. These signals are our toy version of a template bank. After running the
matched filtering process, we can overlay the theoretical waveforms with the signal
and compute the SNR of each waveform. The results, shown in Figure 2.3, show
that the signal is most likely due to the merger of two black holes with M = 36M⊙.
Indeed, a more thorough analysis revealed that the black holes have masses of around
29 and 36 solar masses. This analysis assumed that the spins of the black holes were
aligned with the orbital angular momentum and used a template bank containing
around 250 000 waveforms.

1The existence of GWs was first inferred indirectly from the study of the Hulse-Taylor binary
pulsar system [9].

2The data used for the demonstration is obtained with the PyCBC tutorials from Ref. [11].
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Figure 2.3: Top: Theoretical waveforms of GWs from a binary system of black holes with
equal masses M . Bottom: Comparison between theoretical waveforms (red) and GW150914
signal (blue) with corresponding SNR.

2.4 Multi-messenger astrophysics

Up until today, around a hundred GWs have been observed, all of them generated
by coalescences of binary systems of compact objects formed by heavy stars. The
evolution of these heavy stars eventually results in a supernova explosion. In core-
collapse supernovae (CCSNe), the core collapses and forms a compact, dense object
such as a neutron star or a black hole. Neutron stars are among the smallest and
densest stellar objects and, together with supernovae, harbour important information
on the properties of nuclear matter at high densities. GWs originating from binary
systems of neutron stars, and even of binary systems containing a black hole and a
neutron star have been observed [12, 13].

In the near future, additional detectors such as Einstein Telescope, Cosmic
Explorer and LISA will come online. Together with the upgraded versions of existing
ones, the frequency range over which we will be able to detect GWs will be broadened
and the number of detections will vastly increase. Moreover, GW sources will be
located more accurately in the sky. Future GW detections can hence be combined
with observations of the electromagnetic radiation originating from binary neutron
star mergers or supernovae. In 2017, the first-ever example of such a joint detection of
the gravitational and electromagnetic radiation of a binary neutron star coalescence
led to the birth of the field of multi-messenger astrophysics [14].

Together with neutrinos, small and weakly-interacting subatomic particles, the
combination of all these observational channels will allow us to study in great detail
the dynamics of the core collapse of massive stars as well as the mechanism of the
explosion [15]. It is currently not yet known which mechanism dominates the onset
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2.4. Multi-messenger astrophysics

of core-collapse supernovae. Different mechanisms depending on the microphysics,
such as heating from neutrinos, have been proposed, and these results can also be
influenced by rotation and magnetic fields. Since electromagnetic radiation mostly
arises from the outer layers of the stars, the intricacies of these mechanisms, and our
hope to understand them, are buried deep in the interior of these stars. Since the
GWs of these events originate from the inner regions, they hold crucial information
regarding these formation mechanisms.

In lack of experimental data, most of our understanding of CCSNe and their
gravitational waveforms comes from simulations. While these simulations are indis-
pensable, they come with considerable challenges [16]. The simulated waveforms are
highly dependent on the explosion mechanism, and parameters such as the mass
and rotation of the progenitor. For future detections, we require the simulations
to fully take the theory of GR into account. However, most of the sophisticated
simulations to date model gravity through effective potentials. These simulations
also have a long duration, as the GW signal is influenced by the continued accretion
of matter. Taking neutrino physics into account requires us to simulate the impact
of microphysical effects, such as neutrino oscillations, on the waveform.

Figure 2.4: Mass-radius relationship of neutron stars for 65 different equations of state (blue
lines), along with constraints by experiments (black dashed lines, contours). Figure taken
from Ref. [17].

These challenges are not only limited to CCSNe, but also appear when simulating
neutron stars. One currently open problem in nuclear physics is the precise description
of dense nuclear matter, as experiments on Earth are unable to probe the density
regimes explored by neutron stars. Therefore, neutron stars offer a natural laboratory
to study matter at high density. This microscopic description, which is encoded in
the nuclear equation of state, influences the observables of neutron star systems. For
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2. Gravitational waves

instance, the relation between the mass and the radius of neutron stars depends on
the equation of state [18]. Figure 2.4 shows the theoretical mass-radius relationships
predicted by 65 different equations of state along with constraints from observations
of pulsars. The experiments taken into account here are unable to identify a single
equation of state, such that there are still several possible candidates for the equation
of state today.

Especially in the parameter regions explored by mergers of neutron stars and
CCSN, the equation of state is poorly constrained, and further work and observations
are required to make significant progress [17, 19]. Different equations of state then
lead to different dynamics in simulations and a plethora of gravitational waveforms
to be generated. Future observations of GWs, when compared against such template
banks of accurate waveforms, can potentially further improve the current constraints
on the nuclear equation of state.

In short, the novel field of multi-messenger astrophysics could answer impor-
tant unsolved problems regarding the properties of dense matter. However, the
uncertainties and variance that the unknown equation of state introduces, create
new challenges for numerical simulations. In this thesis, we wish to alleviate these
problems by improving current simulations with machine learning. Before delving
into our work, we present the theoretical framework that is able to model systems
such neutron stars and supernovae within dynamical space-times.
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Chapter 3

General relativistic
magnetohydrodynamics

In the previous chapter, we introduced the field of multi-messenger astrophysics, its
exciting prospects and its current challenges to be tackled. One of those challenges is
to obtain accurate templates of GWs from simulations of neutron stars and supernovae.
In these systems, one has to simulate both the fluid dynamics as well as the space-time
metric. As such, these simulations take place in the framework of general relativistic
hydrodynamics (GRHD). When electromagnetic fields are taken into account as well,
we speak of general relativistic magnetohydrodynamics (GRMHD). This chapter
provides the necessary background of the GRMHD framework and simulations.
We formulate the conservative-to-primitive transformation, the central problem of
this thesis, in more detail. Finally, we introduce the simulation code Gmunu, for
which we developed deep learning methods to optimize the conservative-to-primitive
transformation. This chapter is largely based on Refs. [20, 21].

3.1 Relativistic hydrodynamics equations
Let us first discuss numerical simulations of space-times assuming that the energy-
momentum tensor (the right hand side of the Einstein equations) is fixed and known.
Due to the complexity of GR, only a limited number of analytic solutions to the
theory are currently known. Hence, for systems of astrophysical relevance, one has
to resort to numerical relativity [22]. In the widely used 3 + 1 formalism, space and
time, which were unified into one entity in GR, are decomposed again. Specifically,
space-time is sliced into 3D spacelike hypersurfaces Σt and a spatial three-metric γij

is defined on each hypersurface. The metric1 is then written as

ds2 = −(α2 − βiβ
i) dt2 + 2βi dxi dt + γij dxi dxj , (3.1)

where α is called the lapse function and βi the shift vector. Their geometric interpre-
tation is shown in Figure 3.1.

1Here, we show the line element ds2, which is related to the space-time metric by ds2 =
gµν dxµ dxν , where dxµ = (dt, dx, dy, dz) are differentials.
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3. General relativistic magnetohydrodynamics

Figure 3.1: The 3 + 1 decomposition of space-time. Hypersurfaces of constant coordinate
time Σt are related by the four-vector t representing the direction of evolution of time, split
into a timelike component perpendicular to Σt, αn, and a spacelike component, β.

In the past decades, several schemes have been introduced that cast the Einstein
equations into a form that is appropriate for numerical evolution [20]. One of the most
well-known schemes is the ADM formulation, which applies the 3 + 1 decomposition
to the Einstein equations. This formulation splits the Einstein equations into a set
of evolution equations and a set of constraint equations. Unfortunately, these ADM
equations turn out to be weakly hyperbolic and are therefore not guaranteed to
be well-posed. We will further consider numerical schemes below in the context of
relativistic hydrodynamics.

So far, our discussion only considers evolution equations for the space-time metric,
i.e. the left hand side of the Einstein equations. The right hand side of the Einstein
equations involves the energy-momentum tensor, which describes the properties of
matter and energy present in the space-time. In case the system contains matter that
is best described as a fluid, this information is determined by solving the evolution
equations of the fluid. Hence, GRHD simulations numerically solve a set of relativistic
hydrodynamics equations which we now briefly discuss. The original formulation of
these equations involves the so-called primitive variables, defined in the local rest
frame of the fluid. These are the mass density ρ, velocity field vi of the fluid and
specific internal energy ε. These primitive variables are grouped together in a state
vector P :

P ≡ (ρ, vi, ε) . (3.2)

The pressure p of the fluid is a derived quantity and depends on the equation of
state of the fluid, as we will discuss in further detail below.

The hydrodynamics equations that evolve these primitive variables can be written
in the form2

∂tP + A ·∇P + B = 0 , (3.3)
2Readers are referred to Chapter 7 of [20] for details and derivations, which are beyond the

scope of this thesis.
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3.2. Equation of state

representing a system of hyperbolic equations. Hyperbolicity ensures that the
equations are suited for numerical solvers.

However, using evolution equations in terms of the primitive variables has dis-
advantages for simulations containing shocks and discontinuities, as we will explain
shortly. These issues are resolved by relying on a reformulation of the hydrodynamics
equations, called the conservative formulation. In a conservative formulation, a
different state vector C is used for which the evolution equations take the form

∂C
∂t

+ ∇F (C) = S , (3.4)

where F and S are the flux and source vector, respectively. The variables in the state
vector C are called the conserved variables (or conservative variables), which are the
fluid variables measured in the laboratory frame rather than the rest frame. These
are the conserved density D, the conserved momentum density Si and the conserved
energy E. Since linear combinations of conserved variables are still conserved,
numerical schemes often use the quantity

τ ≡ E −D (3.5)

instead of E for numerical reasons. With these considerations, the state vector
consisting of the conserved variables is then

C ≡ (D, Si, τ) . (3.6)

The importance of conservative schemes is highlighted by several mathematical
theorems. One such theorem states that numerical schemes in which the evolution
equations are not written in conservative form are unable to converge to the true
solution in case a shock is present, which is very likely to occur in hydrodynamical
systems.

3.2 Equation of state
The system of relativistic hydrodynamics equations does not constitute a closed
system. To close the system, additional thermodynamic relations, encoded in the
equation of state (EOS) are required. We restrict the following discussion to two
classes of equations of state which appear throughout this work.

3.2.1 Ideal-fluid equation of state

One of the simplest equations of state is that for a classical monatomic fluid, which
takes the well-known form p = nkBT . It can be shown that this equation of state
is also valid for non-degenerate relativistic fluids, non-degenerate non-relativistic
fluids and non-degenerate ultrarelativistic fluids, to which we will refer simply as
ideal fluids. An equivalent expression of this EOS is the relation

p(ρ, ε) = (Γ− 1)ρε , (3.7)
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3. General relativistic magnetohydrodynamics

where p is the pressure of the fluid and Γ is the adiabatic index of the fluid (i.e.,
the ratio of the specific heat at constant volume over the specific heat at constant
pressure). This EOS is often referred to as the ideal-fluid EOS or the Γ-law EOS.
There are two noteworthy aspects of this equation of state. First, the EOS is analytic,
meaning that the relation between the pressure, density and energy is represented
by a closed-form expression which is easy to evaluate in numerical solvers. Second,
the EOS does not take the microphysics, such as the composition of the fluid, into
account, and hence is an unrealistic equation of state for systems such as neutron
stars and core-collapse supernovae, for which microphysical effects become important.
GRHD simulations also have to keep track of the speed of sound. Its square, denoted
by c2

s, can easily be computed for an analytic EOS from the enthalpy

h = 1 + ε + p/ρ , (3.8)

and derivatives of the pressure using the equation [23]

c2
s = 1

h

(
∂p

∂ρ
+ p

ρ2
∂p

∂ε

)
. (3.9)

3.2.2 Tabulated equations of state

When the microscopic time-scales are comparable to the macroscopic ones, the
assumption of local thermodynamic equilibrium breaks down, and the ideal-fluid
description has to be modified in order to take microphysical effects into account.
This is the case, for instance, in neutron star matter. As a consequence, the EOS
depends on the electron fraction of the fluid, Ye, and generically takes the form
p = p(ρ, ε, Ye). Besides the pressure, these EOS contain additional variables, to which
we will refer as the dependent variables of the EOS. These include the compositions of
particles, chemical potentials or thermodynamic quantities of interest. Therefore, the
EOS must be viewed as a function f(ρ, ε, Ye) that specifies several of such dependent
variables, the pressure only being one of them.

These microphysical EOS introduce several complications for numerical solvers
compared to an analytic EOS, such as the ideal-fluid EOS. First, the thermodynamic
potential from which the physical quantities are derived is the Helmholtz free energy
[24]. As a consequence, the EOS is a function of temperature T rather than the
energy density ε, i.e. the EOS has the functional form f(ρ, T, Ye). While a relation
between ε and T exists, this relation cannot be expressed analytically for these EOS.
Instead, rootfinding methods have to be used to convert ε, which is evolved during
simulations, to the corresponding temperature, which serves as the input of the EOS.
Second, the microphysical EOS cannot be written in a closed-form expression and
are too costly to compute during simulations. Therefore, GRHD codes rely on a
look-up table, which is a table of gridpoints at which the EOS variables are evaluated.
For instance, the pressure is computed as

p = p(ρ, T, Ye) ≈ f[rho, T, Ye](p) , (3.10)
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3.3. Conservative-to-primitive transformation

where the notation on the right hand side indicates that f is represented as an array.
Hence, one often refers to these EOS as tabulated EOS. When the EOS is queried at a
point within the domain of the EOS table, a look-up procedure determines the value
at this point based on the values of the surrounding gridpoints. Most solvers rely
on trilinear interpolation, which is discussed in more detail in Section B.2. A third
complication arises from the fact that the values in the EOS tables are not smooth
and can be noisy or unphysical. Besides introducing errors, this also implies that the
speed of sound cannot be computed exactly as in the ideal-fluid case, since derivatives
of the pressure are inaccurate. Hence, these values also have to be supplied in the
EOS table. A final complication is that EOS tables are memory intensive, with
typical EOS tables easily taking around 800 MB, although the exact size depends on
the resolution of the grid. At higher resolutions, these EOS table can even take up
more than 4 GB of memory which leads to a dramatic impact on the performance of
simulations. It is up to the practitioner running a simulation to choose a resolution,
which leads to a trade-off between accuracy and speed or memory requirements.

Microphysical EOS are derived from finite-temperature theoretical frameworks of
nuclear interactions and are constructed using the methodologies described e.g. in
Ref. [25]. Several EOS tables are provided at Ref. [26]. Each table has 19 dependent
variables (also called columns) which are tabulated as a function of log ρ, log T and
Ye. Besides thermodynamic relations, the table provides chemical potentials and
compositions of various particles and chemical potentials. As an example, we show
a subset of the pressure, specific internal energy and square of the speed of sound
divided by the speed of light for the SLy4 tabulated EOS in Figure 3.2. Note that the
speed of sound values at high density exceed the speed of light, which is unphysical.
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Figure 3.2: Visualization of the SLy4 tabulated EOS, showing the pressure, specific internal
energy and the square of the speed of sound.

3.3 Conservative-to-primitive transformation

As mentioned, numerical GRMHD codes evolve the conserved variables, as such
schemes are guaranteed to converge to the correct result in case the flow develops
shocks or discontinuities. However, the fluxes of the evolution equations depend
on the primitive variables, and hence one has to compute the primitive variables
corresponding to the conserved variables at each time step. This so-called recovery
procedure is hence a central algorithmic step in any GRMHD simulation codes.
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3. General relativistic magnetohydrodynamics

Let us first mention that the transformation in the reverse direction, from primitive
to conservative variables, can be expressed analytically. This primitive-to-conservative
transformation (P2C) is given by

D = ρW (v) (3.11a)
Si = ρhW (v)2vi (3.11b)
τ = ρhW (v)2 − p−D , (3.11c)

where we have defined the Lorentz factor W (v) as

W (v) = 1√
1− vivi

. (3.12)

Recall from Chapter 2 that repeated indices implicitly represent a summation, viz.

viv
i = γijvivj =

3∑
i,j=1

γijvivj . (3.13)

The above P2C transformation is valid for GRHD. In GRMHD, contributions from
the magnetic field have to be taken into account. For simplicity of presentation, we
show the complete GRMHD equations in Appendix A. Note that the transformation,
due to the Lorentz factor, neatly demonstrates that the difference between the
conserved and primitive variables can be ascribed to a change of reference frame.

Unfortunately, the inverse transformation cannot be written in a closed form
expression in relativistic hydrodynamics. While the recovery of the primitive variables
from the conservative ones is trivial in Newtonian hydrodynamics, in the relativistic
setting, one has to numerically solve a system of coupled non-linear equations [27].
The conservative-to-primitive (C2P) transformation must hence be accomplished
using numerical techniques such as rootfinding algorithms. As such, the C2P step
can be computationally expensive and a source of numerical errors, especially for
simulations employing a tabulated EOS. Rootfinding algorithms commonly used by
the Gmunu solver, to be introduced shortly, are the Newton-Raphson (NR) algorithms
and Brent’s method, which are discussed in more detail in Appendix B. Instead of
computing all the primitive variables, it is sufficient to obtain a value for the pressure
p, since the other primitive variables can be computed from the pressure and the
conservative variables. This is achieved by the equations [23]

vi(p) = Si

τ + D + p
(3.14a)

ε(p) = τ + D(1−W ) + p(1−W 2)
DW

(3.14b)

ρ(p) = D

W
. (3.14c)

The importance of an efficient and reliable C2P scheme for GRMHD simulations
cannot be underestimated. The cost of recovering the primitive variables can be
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3.3. Conservative-to-primitive transformation

up to 40% of the total simulation cost [28]. Moreover, this calculation is performed
at each grid point for each time subcycle, easily leading to 109 calls to the C2P
per millisecond [23]. Furthermore, recent work comparing different GRMHD codes
found quantitative differences in simulations involving mergers of binary neutron
stars. Some reported differences are a 10% difference between merger times, different
survival times of the post-merger remnant and different preservation of the magnetic
fields during inspiral. The authors, although without providing solid proof, ascribe
these differences to the different implementations of the C2P algorithms between
solvers. As such, it is clear that the computational efficiency and accuracy of GRMHD
simulations crucially depend on the C2P step of numerical solvers.

Different recovery schemes can be assessed and compared to each other based on
several criteria [28]. First, the speed of the C2P scheme is important. The speed
can be measured in terms of CPU time, although often, one also considers other
measures such as the number of iterations in rootfinding algorithms or calls to the
EOS. Reducing the number of calls to the EOS can be beneficial since, as mentioned
before, microphysical EOS rely on look-up procedures and interpolations, which can
be costly to compute and easily make EOS calls the most expensive part of the C2P
procedure. Second, the C2P naturally has to be performed accurately. Accuracy
can be measured in an artificial test case as follows. Starting from given values for
the primitive variables P , we compute the corresponding conserved variables using
the analytic P2C, and make use of the C2P procedure to numerically compute an
approximation of the primitive variables P ′, which we compare against P to assess
the accuracy. The accuracy can also be tested in numerical solutions which have
a known, exact solution. Finally, C2P schemes have to be robust. Robustness is
often assessed more qualitatively and relates to aspects such as independence of the
initial guess of rootfinding methods, guarantee of convergence and independence of
derivatives of thermodynamic quantities. Moreover, not all combinations of evolved
variables correspond to primitive variables which are physically valid, and robust
schemes have to detect and correct such errors during the evolution [27].

Various recovery schemes have been introduced in the literature. The most
commonly used schemes are those proposed by Nobel [29], Duran [30], Neilsen [31,
32] and Newman [33]. These schemes were compared in Ref. [28], where additionally
another novel C2P scheme was discussed. The main conclusion of this work states
that all state-of-the art recovery schemes can fail in certain regimes, and the efficiency
of a C2P algorithm depends on the EOS that is used. Overall, a three-dimensional
NR scheme is the fastest and most accurate scheme, although not the most robust
one, since the convergence of an NR scheme is sensitive to the provided initial guess.
Moreover, the dependence on thermodynamic derivatives could lead to failure in an
NR scheme. Schemes such as a one-dimensional version of Brent’s method, on the
other hand, are guaranteed to converge. Moreover, in case the derivatives have to be
estimated numerically for a one-dimensional function, Brent’s method is guaranteed
to dominate over an NR scheme [34].

However, the schemes investigated in Ref. [28] are unable to reliably handle and
correct invalid evolved variables.
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More recently, a robust recovery scheme for ideal GRMHD3 simulations was
suggested in Ref. [27], which we will refer to as Kastaun’s scheme. The scheme
applies a rootfinding method to a one-dimensional master function f(µ), where µ is
defined by

µ ≡ 1
Wh

, (3.15)

where h is the enthalpy and W is the Lorentz factor. The scheme comes with a
guarantee, which is proven mathematically, to find a unique solution and to detect
invalid evolved variables. Moreover, the scheme is EOS-agnostic and in particular
does not depend on derivatives of the EOS, such that it is able to efficiently work
with any EOS that is supplied during simulations. The tests carried out in Ref. [27]
demonstrate robustness of the scheme across a range of the magnetic field that is
typically encountered in GRMHD simulations. Compared to the schemes reviewed
in Ref. [28], Kastaun’s scheme is much simpler, since it is formulated as a one-
dimensional problem whereas most of the older schemes tend to be formulated in
two or three dimensions. Overall, Kastaun’s scheme has an improved efficiency and
accuracy over the aforementioned C2P schemes such that Gmunu, the simulation code
adopted in this work, by default relies on Kastaun’s scheme for the C2P conversion.

3.4 GRMHD simulations in Gmunu

The GRMHD simulation code that we use in this thesis is the general-relativistic
multigrid numerical solver, or Gmunu for short [36–39]. As mentioned before, numerical
relativity codes rely on a 3 + 1 decomposition of space-time. As a consequence of this
decomposition, the Einstein equations are split into two distinct sets, a set of evolution
equations and a set of constraints that have to be satisfied during the evolution. Most
NR schemes adopt a free-evolution approach, where the constraints are only solved to
provide initial data. They are then used to monitor the accuracy of simulations but
are not explicitly solved. Alternatively, one can adopt a fully constrained-evolution
approach, where the constraint equations are also solved during the simulations.
While this approach is less popular since the constraint equations are expensive to
solve, it is the approach considered in the Gmunu. To deal with this issue, Gmunu
combines a standard finite-volume grid for the hyperbolic hydrodynamic equations
with a multigrid method for the elliptic, space-time metric equations. Since such
multigrid methods employ a hierarchy of different discretizations, their computational
cost is generally lower than most standard methods. Gmunu is the first solver to
introduce the multigrid approach in the field of constrained-evolution GRMHD codes.
As already mentioned, Gmunu by default relies on Kastaun’s C2P scheme for both
GRHD and GRMHD. Recent developments on the Gmunu have included non-vanishing
electric resistivity in the GRMHD formulation, which is important to realistically
model plasmas, and have implemented radiation transport. Gmunu is written in
the Fortran programming language. Fortran, derived from ‘formula translation’, is

3In the ideal MHD limit, fluids are assumed to have vanishing resistivity such that electric fields
vanish in the co-moving frame of the fluid [35].
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a compiled programming language commonly used in scientific high-performance
computing codes [40]. Further details on the implementation of the solver can be
found in the aforementioned references.

A few studies have been published based on simulations performed in Gmunu.
Ref. [41] proposed a link between the GW signal of a binary neutron star merger
and the fundamental oscillation modes and the mass ratio of the binary system.
Ref. [42] studied the formation process and properties of magnetized hybrid stars,
which are stars consisting of exotic matter such as deconfined quarks besides hadrons.
Finally, Ref. [43] investigated the effects of magnetization on the pulsations of highly
magnetized, non-rotating neutron stars and the GWs they emit.

Our goal in this thesis is to find a way to optimize the C2P conversion in Gmunu.
The approach that we adopt is to cast the problem into a form that can be solved
with the help of machine learning algorithms, which have already demonstrated
remarkable abilities to learn from datasets and speed up computations in various
fields in the past. In the next chapter, we will therefore introduce an overview of
machine learning and the techniques that we use.
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Chapter 4

Machine learning

Machine learning is a large subfield of artificial intelligence, an interdisciplinary field
that studies artificial learning behaviour. Machine learning algorithms are designed
with the capacity to improve their performance by learning from examples, either
provided as input or obtained through interaction with an environment. Different
from standard computer algorithms, these algorithms do not explicitly formulate step-
by-step procedures determining how a task has to be solved. Rather, by specifying a
desired outcome and comparing the algorithm’s behaviour against it, the parameters
of the algorithm can be adjusted in such a way that the final algorithm is able
to achieve the desired task. Machine learning offers tools to extract complicated
patterns from data and learn a model from them. Distilling knowledge from data is
a common goal of both science and machine learning, and combining these two fields
is determined to lead to new, exciting opportunities in the future.

In this thesis, we investigate the possibility of optimizing the complicated C2P
conversion in GRMHD simulations through machine learning algorithms. This
chapter introduces machine learning from a high-level perspective and discusses deep
learning, the technique used in the remainder of the thesis. Moreover, we provide
an extensive overview of past work on the applications of deep learning in Fortran
codes. We refer readers to Refs. [44–46] for more details.

4.1 Introduction to machine learning

Artificial intelligence (AI) can be broadly defined as the study of agents that are
able to receive certain perceptions from an environment and can take actions within
that environment. Viewed as a program, such agents are mappings from percept
sequences to actions. The key distinction in agents studied in AI is rationality. A
rational agent is one that acts in such a way to maximize the expected utility of
the outcomes due to its chosen actions. This broad and vague definition reflects
the variety observed in AI algorithms and applications. The field of AI touches
upon other fields such as psychology and neurology, employs algorithms based on
probabilistic reasoning, logic, or parametric models which learn from tabulated data,
text, images and videos or through experiences and rewards. Besides, agents can
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take the shape of computers, robots, automated vehicles, smart devices and much
more.

Here, we restrict ourselves to machine learning, one of the major subfields of AI.
In the field of machine learning (ML), the agents are programs that build a model
(a hypothesis of the environment) from observations of data. A formal definition
which is often mentioned is one coined by Mitchell [47]: “A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks T , as measured by P , improves with experience
E”. We will only deal with supervised learning problems, where these experiences
consist of instances of input-output pairs (also called attribute-value pairs) and the
algorithm has to learn the correct mapping from input to output. Often, the input
values are called the features and the output values the labels. The algorithm is then
provided a dataset of samples of such pairs of input-output examples, from which
it has to learn the mapping, generalized to the population from which the dataset
is sampled. If the domain of the labels constitute a finite set, then the problem is
said to be a classification problem. When the output values are continuous variables,
the learning problem is said to be a regression problem. In this thesis, we will only
encounter regression problems.

4.1.1 Regression problems

A regression problem is more formally described as follows. Given a dataset

{(xi, yi) ∈ Rn × Rm | yi = f(xi)} , (4.1)

for i = 1, . . . , N and with f an unknown function, the goal is to find the hypothesis
h : Rn → Rm (also called the model) in a hypothesis space H that provides the best
approximation of the function f . To evaluate the approximation, one defines a loss
function L that quantifies the error between the predictions of the model, denoted
by ŷ, and the actual values. A commonly used loss function is the mean-squared
error (MSE) loss:

L(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 . (4.2)

Therefore, the goal of a regression problem can be rephrased into finding the hypoth-
esis that minimizes the loss. However, minimizing the loss function on the provided
samples does not guarantee that the learned model will be a reliable approximation
of the true underlying function across its entire domain. Therefore, when measuring
the performance of a hypothesis h, we are more interested in the generalization of h.
We say that h generalizes well if it has a high performance (low loss) on a dataset of
previously unseen examples. Therefore, ML practitioners often keep a part of the
available data (called the test set) separate to check the model’s performance on
unseen data.

Several techniques exist to ensure that ML models generalize well. One common
technique is to split the available data into a training set and a validation set. The
former is used to tweak the model’s parameters, whereas the latter acts as a proxy to
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the test set and monitors the performance on unseen data during the learning phase.
By comparing the loss on the validation set, different ML models can be compared
to each other, allowing us to select the best model among a set of proposals. We
can now more formally state that with training an ML model, we mean iteratively
presenting the training data to the model and updating its parameters1 in each
iteration in such a way to minimize the training loss up until a criterion is met, such
as reaching a convergence condition or a maximal number of training iterations. In
ML literature, a single training iteration is also commonly referred to as an epoch.

4.1.2 Generalization and overfitting

The hypothesis space H should be selected with care. Importantly, there is a trade-
off between the capacity or expressiveness of models in a hypothesis space and
the computational complexity required to determine a good hypothesis within the
hypothesis space. Often, this choice is intertwined with the bias-variance trade-off,
which is a trade-off commonly encountered in ML. That is, one must decide between
a complex and expressive model that has low bias and can readily fit the data, but
may exhibit high variance in the learned model with respect to the provided data,
and a simpler model with high bias that may have difficulty fitting the data, yet
can decrease variance and potentially improve generalization. This balance has two
extremes which are catastrophic for any ML algorithm. When we are unable to find
a hypothesis in the hypothesis space that reasonably fits the training data, we say
that the model is underfitting. One example is a linear regression model trained on
data sampled from a quadratic function. On the other hand, highly flexible models
with too many parameters can easily fit the training data, but likely have poor
generalization, which is known as overfitting. For instance, n datapoints can always
be exactly fitted with a polynomial of degree n + 1, but when the underlying function
is linear, these models will have poor performance on unseen data.

Several techniques exist to prevent a model from overfitting. For instance, one
can monitor the loss on the validation set during training. This allows us to gain
insight into the generalization of the model during training. If the training loss is
decreasing but the validation loss starts to increase, this signals that the model is
overfitting on the training data, at which point the training must be stopped. This
procedure is known as early stopping. Another commonly used technique is to modify
the loss function by introducing a term that depends on the complexity of the model
and penalizes more flexible models. Such a regularization term ensures that the
optimal model achieves a trade-off between simplicity (“regularity” of the hypothesis)
and accuracy and is inspired by Occam’s razor dictating that simpler models likely
generalize better.

During training, the precise procedure of updating a model’s parameters depends
on the model that is being learnt. For convenience, we interpret the loss function as

1In light of the techniques used in Chapter 5, our discussion is limited to parametric ML models
with continuous parameters.
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depending on the parameters θ of the model in a continuous manner, viz.

L(y, ŷ) = L (f(x), h(x; θ)) . (4.3)

Training the ML model is then an optimization problem formulated in the parameter
space of the model, and the goal of the training algorithm is to find the optimal set
of parameter values θ⋆ found by

θ⋆ = arg min
θ
L (f(x), h(x; θ)) . (4.4)

We refer to the loss landscape as the loss function viewed as a function of the
parameters θ, i.e. L(θ). Only for a few ML models, such as the linear regression
model, can we determine θ⋆ analytically by solving ∂θL = 0 to determine the
minimum of the loss landscape.

More often, one has to rely on numerical optimization algorithms to find the
minima of the loss landscape. Many of these techniques are variants of the well-
known gradient descent algorithm, which updates the parameters in the direction of
decreasing loss value determined by the gradient of the loss landscape, viz.

θ ←− θ − α∂θL(θ) . (4.5)

Here, the proportionality constant α is called the learning rate. Artificial neural
networks, a popular class of ML models to be introduced shortly, are precisely trained
by such optimization algorithms.

4.1.3 Intermezzo: instance based learning

Before delving deeper into the techniques used in this thesis, we provide a few remarks
on a different class of ML models outside of the supervised learning setting known
as instance based learning, its relevance for this work and its relation to supervised
learning.

The hypothesis of an instance based learner is in fact the dataset itself, and the
“learning” phase consists of simply storing the provided data. Instance based learners
are therefore also called lazy learners. In the context of predictive learning, the
specific task that instance based learners achieve is transductive learning. That this,
predictions on a new input are based on, for instance, the k nearest neighbours of the
input in the dataset, with k a tunable hyperparameter. In the context of regression,
the output can be determined by performing a weighted regression through these
nearest neighbours. As such, lazy learners are non-parametric models that construct
local models hx, that explicitly depend on the training data, at prediction time.

In supervised learning, on the other hand, the algorithms learn a global model h,
which hence achieves inductive learning. These learners are called eager learners since
they process the dataset to create the model before new, unseen instances are shown
to the learner. There are a few differences between lazy and eager learners. For eager
learners, the learning phase is typically slow, while the prediction phase can be faster
than instance based methods. Moreover, these learners learn a global model with the
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aim to generalize well to the population. Lazy learners have a fast learning phase,
as they just store the data, but can be slow at prediction times depending on the
data and application. On the other hand, computations can be more sophisticated
because they locally use the provided data to make new predictions.

With our discussion of the use of tabulated EOS in GRMHD simulations from
Section 3.2.2 and the trilinear interpolation algorithm discussed in Section B.2 in
mind, it is clear that the look-up procedures of EOS tables can be seen as a form
of instance based learning. In Chapter 5, we compare the efficiency of lazy learners
against eager learners at predicting new values of the EOS variables.

4.2 Artificial neural networks and deep learning

Deep learning (DL), a popular and dominant subfield of machine learning, encom-
passes a wide variety of hypothesis spaces that can be described as algebraic circuits
made of computational units with tunable connections between them. These circuits
are “deep” in the sense that their computational graph can easily involve many
steps in more complicated deep learning architectures. Here, we will mainly refer to
these circuits as2 neural networks (NNs). The name originates from the fact that,
historically, NNs were introduced as an artificial model of the brain. As such, the
nodes of the networks are also commonly referred to as neurons.

4.2.1 Multilayer perceptrons

Let us now consider how these networks can be applied to regression problems. We
will restrict ourselves to feedforward neural networks, which only have connections
from the input to the output of the network. The neurons are organized into several
layers. To represent functions, they hence should certainly have an input layer and an
output layer, where the dimensionality of the input and output space determine the
size of the input and output layers, respectively. Let us build up intuition with the
simplest NN architecture, known as the perceptron, consisting of one input neuron
and one output neuron. The result of the output layer depends on the value of the
input unit and the interconnection strength between the two neurons, called the
weight w. Qualitatively, the output is determined by the Hebbian rule “neurons that
wire together, fire together”. That is, a high value for w means that the output will
amplify the value coming from the input, while a low value for w implies that the
input will not affect the output at all. The output is also affected by a constant
offset, the bias b. If the input node has value x, then the value of the output node of
the perceptron is computed as

y = wx + b . (4.6)

Often, one considers the bias term as originating due to an additional, dummy
input node with value 1 and corresponding weight b. That way, we can write the

2Whereas the precise term should be artificial neural networks, we will refer to these circuits as
just “neural networks” for simplicity.
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computation for the output as a matrix-vector product:

y = W T · x , W =
(

b
w

)
, x =

(
1
x

)
. (4.7)

Therefore, when referring to the weights of the network, we will always implicitly
include the bias terms as well.

While the perceptron seems simplistic, it is in fact the NN representation of
linear regression, a staple among statistical tools. In Figure 4.1, we show the graph
representation of the perceptron and the loss landscape as a function of the weights of
the perceptron. While analytic relations exist to determine the optimal parameters for
linear regression, one can imagine the perceptron to learn these optimal parameters by
traversing the loss landscape towards its minimum through the principle of gradient
descent.
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Figure 4.1: Illustration of the perceptron representation of linear regression and its loss
landscape.

The true power of deep learning comes, as the name suggests, by extending the
simple perceptron into deeper (more layers) and wider (more neurons) architectures
that can approximate non-linear functions as well. To get more complicated architec-
tures, we introduce additional layers between the input and output layer. These are
called the hidden layers, since their computations are not directly observed, unlike
the input and output layers. As before, each layer is the weighted sum of the neurons
of the previous layer, viz.

z(l) = W T
(l) · z(l−1) , (4.8)

where l is a layer index.3 We can think of each hidden layer as corresponding to
a different representation built from the original input. Often, the sizes of the
hidden layers are much larger than the dimensionality of the input. In the graph
representation corresponding to Eq. (4.8), all neurons of layer l − 1 are connected to
all neurons of layer l. Such networks are said to be fully connected or dense.

Connecting several hidden layers using the transformation from Eq. (4.8) results
in a class of linear networks. We can introduce non-linearity by including activation

3For simplicity, we will not mention the bias term explicitly anymore, although we always use
bias terms for every layer unless stated otherwise.
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functions. These are non-linear functions φ applied to the weighted sum of Eq. (4.8),
such that the values computed in layer l become

z(l) = φ
(
W T

(l) · z(l−1)
)

, (4.9)

The activation functions that we consider in this thesis are the sigmoid activation
function:

φ(z) = 1
1 + e−z

, (4.10)

and the rectified linear unit (ReLU):

φ(z) = max(0, z) , (4.11)

which are easily extended to vectors by applying these operations element-wise.
Combining all of the above ingredients leads to the concept of multilayer percep-

trons (MLPs), which are fully connected feedforward neural networks with non-linear
activation functions applied to the hidden layers.4 These are the network archi-
tectures that we employ in this thesis. Building on top of the intuition that we
gathered from the perceptron, we can interpret MLPs as performing linear regression
on the final hidden layer to compute the output. This final hidden layer is then
a set of high-dimensional abstract features obtained by performing a non-linear
transformation on the input data. This transformation is obtained by chaining the
transformations of the previous hidden layers, where the NN learns, by adjusting the
weights of the network, to build the representation that gives the best results in the
linear output layer.

Mathematical theorems have demonstrated that MLPs are universal approxima-
tors. That is, they can be used to represent any continuous non-linear function to
arbitrary accuracy. However, these theorems do not include constructive proofs, and
finding a good architecture is often based on trial and error. While the loss landscape
of the linear regression problem was a two-dimensional convex surface with a unique,
global minimum, the loss landscape of most MLPs are high-dimensional surfaces
with many local minima. Random initialization of the network weights implies that
different training runs can converge to different minima. Therefore, when training
MLPs, we are often optimizing the network weights until a local minimum is reached.

4.2.2 Optimization algorithms

The core idea of training MLPs builds on gradient descent. When presented a training
example, the network performs a forward pass, where information propagates from
the inputs to produce an output ŷ. Comparing the prediction with the true label
y, we then compute a loss value. The backpropagation algorithm allows one to
easily compute the backward pass, where information of the loss flows backwards
through the network to compute gradients on the weights. Backpropagation relies on
automatic differentiation, which applies the rules of calculus to the computational

4With a slight abuse of terminology, we will use the terms neural networks and multilayer
perceptrons interchangeably.
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Figure 4.2: Illustration of the MLP as universal approximator. The loss landscape is high-
dimensional and contains many local minima. Image generated by Ref. [48].

graph that MLPs represent. Indeed, computing the desired gradients is done by
applying the chain rule in reverse mode differentiation. Details and derivations of
the backpropagation algorithm can be found in Ref. [46].

Once the gradients are evaluated, it can be passed to the optimizer to update
the parameters of the NN. Several optimization algorithms exist that improve upon
the basic idea of gradient descent. One improvement, shared by many optimizers,
is to use small, random subsets of the training data to estimate the gradient in a
statistically robust manner. Such algorithms are called minibatch algorithms. The
size of these minibatches is typically taken to be 16 or 32. When gradient descent
uses an estimate for the gradient obtained in this way, it is referred to as stochastic
gradient descent. This optimizer can be accelerated by adding a momentum term,
which accumulates a decaying moving average of previously computed gradients to
aid the search. Another popular extension is to use an adaptable learning rate. One
popular algorithm is Adam, derived from “adaptive moments”. Here, one computes
an unbiased estimate for the first and second moments of the gradient. Adam is
generally regarded as fairly robust to the choice of hyperparameters.

4.2.3 Neural architecture search and pruning

While the universal approximator theorem ensures that MLPs can approximate
any function, it is not clear how to determine an architecture that is able to fit
the data and generalize well. Generally, this is determined through trial and error.
However, since we are interested in speeding up simulation codes, we would like to
find an optimal architecture that is able to fit the data with as minimal neurons as
possible in order to ensure that the networks can be evaluated efficiently. In fact,
this determines a meta-optimization problem, formulated over the space of all MLPs.
The field of neural architecture search deals with such architecure engineering issues.

There are several neural architecture search techniques discussed in the literature,
which can be characterized based on three criteria: the search space (i.e., the
hypothesis space of possible network architectures), the search strategy and the
performance estimation strategy [49]. Even when restricting to standard MLPs,
where only the number of hidden layers, their sizes and the activation functions
determine the search space, one encounters an enormous search space. Clever search
strategies have to be designed that provide a trade-off between exploration and
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exploitation during the search. Examples include using random search, Bayesian
optimization, evolutionary algorithms, reinforcement learning or gradient-based
methods in a continuous search space. To estimate the performance, one obvious
strategy is to train each network configuration to convergence (using early stopping
on a validation set, for instance). However, this is clearly computationally expensive
even for small architectures. While several proxy metrics have been proposed in the
literature to shorten the training, they can lead to biased estimates and are beyond
the scope of this work to implement and experiment with.

A simpler procedure, which we adopted in this work, is to find (through trial and
error) an architecture of reasonable size that is able to fit the data, and reduce its
size through pruning. In the context of NNs, pruning refers to removing parameters
from an existing, trained network in order to reduce the complexity of the network
while maintaining similar performance. Implementations of pruning schemes differ
on various levels [50]. For instance, unstructured methods prune an individual
parameter, while structured methods remove groups of parameters, for instance by
removing neurons which are connected by several weights. Scoring a pruned network
can be done locally or globally, depending on whether we take into account the
location inside the architecture where pruning occurred. Schemes can differ in their
scheduling, which determines if weights are pruned iteratively or entirely at once.
Finally, networks are often fine-tuned (i.e., trained after pruning), although details
differ depending on the implementation. The methods of optimal brain damage
(OBD) and optimal brain surgeon (OBS), which prune individual weights, are among
the most well-known pruning methods [51, 52]. OBD prunes those weights whose
deletion have the smallest impact on the training error. OBS improves upon the
methods of OBD by including information from the second-order derivatives of the
loss function.

In this work, we have briefly explored a simple, greedy pruning scheme that
prunes individual neurons based on their impact on the training loss. The pruning
is performed iteratively and each iteration prunes a single neuron from the original
network, such that we employ a hill climbing-like search strategy. The pseudocode
of the pruning scheme is shown in Algorithm 1.
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Algorithm 1 Greedy hill climbing neuron pruning
Require: network, H hidden neurons
Require: threshold, to determine whether to fine-tune a pruned network
Ensure: best_network, K < H hidden neurons

1: while K < H do
2: best_network ← None
3: best_loss←∞
4: for i = 1,. . . ,H do ▷ Find optimal neuron to prune
5: pruned← delete_hidden_neuron(network, i)
6: loss← measure_loss(pruned)
7: if loss < best_loss then
8: best_network ← pruned
9: best_loss← loss

10: end if
11: end for
12: network ← best_network
13: H ← H − 1
14: if best_loss > threshold then
15: train(network) ▷ Fine-tune the pruned network
16: end if
17: end while

4.3 Deep learning in Fortran
We chose to work with NNs in this thesis for two reasons. First, MLPs are easy to
implement and train in Python thanks to highly-optimized open-source libraries. In
this work, we designed and trained neural networks with PyTorch [53]. Second, the
computations of MLPs are created from simple building blocks such as matrix-vector
multiplications and a few non-linear activation functions. As these building blocks are
either supported by or straightforwardly implemented in any programming language,
we can easily export NNs to Gmunu, which is written in Fortran.

At first sight, deploying deep learning models trained in Python in simulation
codes written in Fortran seems merely an issue of programming language interoper-
ability. However, large-scale simulations rely on parallelization such that additional
considerations such as efficient threading and data exchange complicate the matter.
Furthermore, simulations benefit from an efficient implementation which goes beyond
integrating a functional version. The problem is not restricted to the Gmunu solver
considered in this work, since many numerical simulation codes, including those from
entirely different fields such as computational fluid dynamics and climate modelling,
are written in Fortran. Therefore, communities dealing with such high-performance
computing (HPC) codes currently lack a universal, optimized technique to integrate
NNs into Fortran codes. Developers of HPC codes as well as Fortran developers both
have pointed out this apparent gap and expressed the need for bridging this gap [54,
55].
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In this section, we provide an overview of existing attempts to bridge the gap,
discuss their benefits or disadvantages and point readers towards the most promising
methods for future development. We start off by providing a discussion on the most
important requirements for the integration of DL frameworks with Fortran HPC
codes. Afterwards, we compare existing software packages that have been developed
to achieve this integration.

4.3.1 Wishlist

Before discussing the existing approaches to integrate DL (or more generally, ML)
frameworks in Fortran HPC codes, let us give an extensive overview of desirable
properties that such an integration should have.

First, inference of the deployed ML model should be as efficient as possible such
that ML methods offer a computational advantage. Here, efficiency can be measured
either in terms of latency or inference throughput. While there has been some
work regarding such a comparison in Ref. [56], a complete comparison has not been
completed. Since efficiency depends on various factors (such as the source code of
the simulation, the application under consideration, the trained model), it is hard to
estimate the performance of strategies beforehand. Therefore, we will continue our
comparison based on implementations of the code.

Second, the integration should require minimal adjustments to the simulation
source code for several reasons. First, HPC simulations are typically not written
with the interoperability between Python and Fortran in mind. Adjusting source
codes to include this interoperability is time-consuming and tedious. Second, due
to their popularity, existing DL frameworks are developed at a rapid pace which
HPC communities are unable to follow. Third, developers of HPC simulation codes
have limited resources which ideally should be dedicated towards their source code.
Therefore, the integration of DL should ideally be achieved “under the hood”.

Third, we want the integration between DL and Fortran solvers to be flexible.
That is, we want to be able to easily switch between different models within a
simulation. Moreover, since several DL frameworks exist in Python which are more
or less equally popular (such as scikit-learn, TensorFlow or PyTorch), the integration
should be agnostic of the specific library used to train networks. Hence, the exported
models should be based on a universal format. In short, loading models in Fortran
should require a minimal amount of preprocessing steps.

Fourth, the integration should rely on existing open-source libraries such as
TensorFlow or PyTorch. These libraries are developed by large communities of
developers and are evolving at a rapid pace. Rewriting these libraries in Fortran is
unlikely going to provide the same optimized functionalities and similar support as
existing state-of-the-art DL frameworks. However, the Fortran community seems
divided on this idea [57].

Fifth, the integration should be achieved by an implementation used and shared
by a larger community which is actively working on the implementation to provide
support to new users and adapt the codebase to changes and additions to DL
frameworks.
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Sixth, the integration should offer hardware optimization and support the use of
accelerators such as GPUs and parallelization of code, as these are standard practices
for HPC simulations which often involve large-scale simulations.

Seventh, an ideal integration should enable the online training of ML models.
That is, we envision future applications which train ML models based on data
acquired during simulations. For such applications, batch learning is less suited,
since large scale simulations involve many gridpoints over large timescales. Saving
data to external files would require extensive use of an I/O system, slowing down
the simulation and creating large datasets to process. Training a model from this
data is infeasible due to the size of the dataset and the implied training time. Hence,
we wish to rely on libraries that efficiently allow online learning. An additional
advantage of online learning is that one can take the performance of the model into
account before deciding to provide a datapoint to the model for training.

4.3.2 Overview of existing methods

We provide an overview of existing approaches that integrate deep learning with
Fortran. A summary and comparison of the main approaches discussed in this section
is provided by Table 4.1. The main criteria we consider are portability (easy to
export and relying on universal formats), flexibility (easy to change models or to use
several models at once), active development of the software, support for hardware
optimization and the ability to train models in an online setting.

Table 4.1: Comparison between frameworks integrating deep learning with Fortran.

API roseNNa pytorch-fortran neural-fortran/FKB SmartSim

Portability × × ×

Flexibility × × × ×

Active development × ×

GPU/parallelization ×

Online learning × × × ×

Hard-coded single-use neural networks

A first option, not included in the table above, is to recreate the computations of a
trained NN directly in a Fortran program. For this, one can use Fortran’s built-in
matrix multiplication and implement the activation functions from scratch. The
weights and biases of the network can easily be exported to CSV or HDF5 files after
training, which can be processed in Fortran. This approach has been used before in
the field of climate modelling [58].

Such an implementation does not offer the more advanced features highlighted in
our wishlist. Nevertheless, it is an ideal approach for works that deal with proof of
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concepts. As such, we have chosen to adopt this approach to integrate our NNs into
the Gmunu simulation code. An example of our deep learning code in Fortran, which
implements the NNC2P architecture that we are going to present in Section 5.2, is
provided in Appendix C.

Language binding

One possibility is to interface other programming languages from Fortran, known
as language binding. For instance, one can interface Python directly from Fortran
code. In Ref. [59], the authors couple a trained NN with their Fortran simulation
code of gravity waves (not to be confused with gravitational waves) using the forpy
package [60]. They report that their Fortran implementation of the neural network
is 2.5 times slower, such that this approach has to sacrifice performance.

However, another option, which is also supported in PyTorch, is to use an export
API to convert the NN models to TorchScript [61, 62]. TorchScript compiles NN
models to serializable versions which have the advantage that they can be loaded
into processes without any Python dependency. Converting models to Torchscript is
done through tracing and scripting, which track the computations that the network
performs. Afterwards, a computation graph is created, which can be processed in
other environments and programming languages, such as C++ [63]. One approach
would be to call a C++ program to perform inference of the model from Fortran
programs. In this work, we have not compared the efficiency of this implementation
compared to the hard-coded implementation discussed above. In Ref. [56], the
authors argue that using the TensorFlow C++ API has high portability but less
flexibility. In terms of concurrent calls and inference throughput, the authors remark
that the C++ API is outperformed by the SmartSim package, discussed below.

Fortran libraries

To circumvent the use of other programming languages, a few open-source libraries
have been developed that run inference on trained models by rebuilding them directly
in Fortran. Ordered in increasing popularity (measured by number of stars on
Github), we will discuss the roseNNa, pytorch-fortran, FKB and neural-fortran
libraries [64–67]. We dedicate the next subsection to SmartSim, a package adopting
a similar approach but specifically designed and optimized for HPC simulations.

roseNNa is a fast and minimally intrusive library to perform neural network
inference in Fortran. It is built on top of the open neural network exchange (ONNX)
format, an open format that defines a collection of operators commonly used in NNs.
This file format achieves interoperability, such that developers can create networks in
their preferred framework without sacrificing performance when using other inference
engines. Another key benefit is that ONNX offers hardware optimizations to increase
performance. The ONNX format has wide support from developer communities
and companies. Moreover, the software is actively being developed on Github, as
demonstrated by several commits and bug fixes during the time of writing and
having more than 200 collaborators, 3 000 forks and 14 000 stars. Furthermore,
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ONNX is supported by popular DL frameworks such as PyTorch and TensorFlow,
and exporting models to ONNX format is as easy as exporting to TorchScript [68].
roseNNa creates Fortran representations of NNs by postprocessing the ONNX files
and compiling architectures from custom Fortran modules based on this information.
Practitioners can easily integrate the roseNNa library in their simulation codes if they
so desire. However, to switch to a different model, practitioners are required to apply
a sequence of preprocessing steps to convert the model to an ONNX format and
correctly parse it with roseNNa. Moreover, running several models requires extending
the current implementation of roseNNa. Currently, roseNNa supports recurrent NNs,
convolutional NNs and MLPs. Since their final commit to the repository was in
April 2023, it is not clear if the developers aim to further extend the package.

pytorch-fortran provides a simple way to use PyTorch models in Fortran HPC
codes. Besides running inference on trained NNs, pytorch-fortran also offers
the possibility to train an NN within Fortran. However, this repository does not
seem to rely on the ONNX format, which excludes the use of other popular deep
learning frameworks such as scikit-learn and TensorFlow which support the ONNX
format. Moreover, since the last commit to the repository was in April 2023 and the
introduction mentions that the code is “very much work-in-progress”, it is not clear
if pytorch-fortran is a reliable package for integrating deep learning in Fortran.

FKB, short for Fortran-Keras bridge and built on top of the neural-fortran
package, brings the deep learning tools from Keras, a high-level library built on top
of TensorFlow, to Fortran HPC codes. The so-called Python anchor stores trained
Keras models in HDF5 files containing all information regarding network architecture,
weights, biases and information regarding the training such as optimizers and learning
rates. The Fortran anchor then parses this information and recreates the network
in Fortran. Networks can also be constructed and trained in Fortran and exported
to Keras for additional training or hyperparameter tuning. However, it is not clear
whether NNs can be trained during simulations as well. The FKB code has been
successfully applied to case studies [69]. However, a clear disadvantage is the fact
that FKB relies on custom configuration files that specifically process Keras models.

neural-fortran provides out-of-the-box support for MLPs with an arbitrary
architecture, optimization, data-based parallelism and saving and loading trained
networks. While written in Fortran, the code achieves a similar performance com-
pared to training in Keras, although neural-fortran was only implemented as a
proof of concept while Keras is highly-optimized [70]. While the original aim of
neural-fortran seemed to be providing a Fortran implementation of deep learning
from scratch, a more recent version of neural-fortran has integrated the features
provided by FKB. Moreover, it has extended the work of FKB and also supports
training and inference of convolutional networks. We also note that the main contrib-
utor of neural-fortran contributed to FKB. Since neural-fortran is more actively
maintained at the time of writing, it has likely continued the development of the
features offered FKB.
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SmartSim

Currently, the most promising software package to achieve an ideal merger of DL
frameworks and Fortran HPC codes is the SmartSim library, which solves the issues
that were raised for the other libraries [71].

SmartSim consists of two libraries. The first one, called the infrastructure library,
offers a Python workflow to facilitate the execution of HPC and ML scripts. This
library allows applications written in Fortran, C, C++ and Python to easily commu-
nicate without the need of reading from or writing to the filesystem. The models can
be efficiently executed on either a CPU or GPU. Furthermore, the library relies on
the universal ONNX format. The striking advantage of this set-up is that the com-
munication can be realized without adjusting the source code of either the ML model
or the simulation code, making it the most portable and flexible framework covered
so far. This is achieved by the second component of SmartSim, called SmartRedis.
SmartRedis is built on top of RedisAI, a server optimized for serving ML models
[72]. SmartRedis adds functionalities to RedisAI which are specifically designed for
HPC codes, such as Fortran clients and distributed placements of the models and
scripts to allow parallelization to maximize inference throughput.

The experiments performed in Ref. [71] demonstrate that SmartSim offers an
ideal integration of deep learning with Fortran HPC codes. Moreover, the code is
still actively developed. Finally, the fact that the SmartSim framework circumvents
the use of the filesystem as intermediary makes it the only framework discussed
here that enables online training of ML models. To reinforce this latter point, we
note that Ref. [73] relied on SmartSim to augment a computational fluid dynamics
solver with a reinforcement learning agent that learns a control strategy to select the
viscosity in large eddy simulations. Contrary to supervised learning, a reinforcement
learning agent learns through continuous interaction with the environment rather than
optimizing weights based on a labeled training dataset. Therefore, the integration of
ML and HPC codes is more involved for reinforcement learning applications, since
the simulations and learning have to run in parallel. Despite these challenges, the
results of Ref. [73] demonstrate that SmartSim is capable of achieving this, offering
supporting proof that the techniques employed in SmartSim are beneficial for future
applications.
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Chapter 5

Machine learning for the C2P
conversion

In previous chapters, we discussed that GRMHD simulations, from which we wish to
obtain accurate waveforms of GWs, are obstructed by the conservative-to-primitive
conversion as a significant bottleneck. We also discussed that modern machine learn-
ing algorithms can efficiently approximate any function by learning from examples.
In this chapter, we now explore the possibility of improving the C2P conversion by
integrating machine learning algorithms into GRMHD simulations.1

5.1 Earlier work and outline
Accelerating GRMHD simulations by ML techniques has been relatively unexplored in
the past. In Ref. [23], the authors addressed the potential of using neural networks to
speed up the C2P conversion. Their proof of concept analysis investigated simulations
in GRHD using the ideal-fluid EOS, given by Eq. (3.7). This work discussed two
possible novel methods to speed up the C2P transformation. First, the authors use
an NN that is trained to replace the EOS. Such a replacement can be beneficial since
evaluating tabulated EOS can be costly and can introduce numerical errors, while
NNs may circumvent these issues. This first kind of architecture has been named
NNEOS. Second, the authors consider replacing the entire C2P conversion with an
NN. Since the current C2P schemes involve rootfinding procedures making several
calls to the EOS, which can be costly, such a replacement can avoid using the EOS
directly. Hence, such a replacement can be a promising method to accelerate the
simulations. This second class of methods is referred to as NNC2P.

Besides offering a proof of concept implementation of these ideas for the case
of an analytic EOS, the authors investigate the NNEOS and NNC2P methods in
realistic simulations that make use of tabulated EOS. As a test case, the authors still
consider the ideal-fluid EOS, but generate a mock table that tabulates the relevant
EOS values rather than relying directly on the analytic expression. This allows

1All code written for this and the next chapter can be found at https://github.com/
ThibeauWouters/master-thesis-AI
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the comparison between standard interpolation methods used for tabulated EOS
and the NNEOS and NNC2P methods in a more realistic, yet controlled problem.
The architectures corresponding to the NNEOS and NNC2P methods are shown in
Figure 5.1 and will be discussed in more detail below.

D

Si

τ

γij

Bi

p

log ρ

log T

Ye

p

ε

c2
s

D

Si

τ

γij

Bi

µ

Figure 5.1: From left to right: the NNC2P, NNEOS and NN assist architectures considered
in this chapter. Hidden layers are not drawn to scale.

Our work presented in this chapter is, first of all, intended to be an independent
validation of the main results reported in Ref. [23]. However, the results from Ref. [23]
were obtained from a solver implemented in Python. Scientific high-computing codes,
such as GRMHD solvers like Gmunu, are instead implemented in Fortran. As such,
our work extends the work of Ref. [23] by considering its application to such state-
of-the-art solvers. Furthermore, we consider a novel idea which attempts to unify
existing C2P schemes and ML models into a framework that improves upon the
methods of Ref. [23], for reasons discussed in detail in the next chapter. This idea is
able to combine the best of both worlds and, based on preliminary results, seems
a promising method to speed up GRMHD simulations. Our hybrid method has
a similar architecture as the NNC2P architecture, but rather than computing the
pressure p, it outputs an initial guess for the rootfinding methods used in Kastaun’s
C2P scheme. Therefore, we refer to this method as the NN assist. While future work
has to test this method in more realistic scenarios, we will argue in Chapter 6 that
its extension is a more promising method than the ideas put forward in Ref. [23].

The outline of this chapter is summarized by Table 5.1. In Section 5.2 and
Section 5.3, we consider the NNC2P method, where we replace the entire C2P
conversion with an NN for simulations using analytic EOS and tabulated EOS,
respectively. In Section 5.4, we consider the NNEOS method to replace the look-up
procedures used for tabulated EOS with an NN. Finally, in Section 5.5, we consider
our hybrid method which combines an NN with Kastaun’s C2P scheme. In the next
chapter, we discuss the results presented in this chapter and reflect on extensions for
future work.
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Table 5.1: Outline of this chapter.

EOS

C2P Kastaun
NNC2P

Rootfinding Hybrid

Analytic EOS status quo Section 5.5.2 Section 5.2

Tabulated EOS status quo Section 5.5.2 Section 5.3

NNEOS Section 5.4 – –

5.2 NNC2P with analytic EOS

While the C2P conversion cannot be formulated in a closed-form analytic expression,
we can view the conversion as a mapping from the conservative variables to the
primitive variables. Since NNs are universal approximators, this transformation can
be approximated by an NN. Recall from Eqs. (3.14) that it is sufficient to learn the
pressure p as output variable, since the other primitive variables can be obtained
from the pressure and the conservative variables.

Figure 5.1 shows the most general NNC2P architecture. The input consists
of the conservative variables D, Si and τ , where i is a spatial index of which the
range is determined by the dimensionality considered in the simulation. Simulations
involving dynamical space-times also have to consider the spatial metric γij in the
computation of the Lorentz factor, as the square of the velocity depends on the
metric. Since Gmunu applies a conformal transformation to the space-time metric,
the metric is diagonal and the node γij effectively accounts for up to three additional
input variables. Furthermore, the C2P in GRMHD also depends on the magnetic
field Bi as input, as the equations of Appendix A show. However, in this section, we
test the NNC2P method only in 1D GRHD test simulations with flat space-times,
such that the relevant input nodes are D, Sx and τ .

5.2.1 Data generation

Training data can easily be generated by the P2C transformation. We uniformly
sample datapoints for the primitive variables within the range

ρ ∈ (0, 10.1) (5.1a)
ε ∈ (0, 2.02) (5.1b)

vx ∈ (0, 0.721) . (5.1c)

This range is covered by the two GRHD test simulations considered below. From the
sampled primitive variables, we compute the corresponding conservative variables
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using the P2C transformation, viz.

D = ρW (5.2a)
Sx = ρhW 2vx (5.2b)
τ = ρhW 2 − p−D , (5.2c)

where h = 1 + ε + p/ρ is the enthalpy and

W = 1√
1− vivi

= 1√
1−

∑
ij γijvivj

. (5.3)

is the Lorentz factor, which for the simulations considered below simply reduces to

W = 1√
1− v2

x

. (5.4)

We consider the ideal-fluid equation of state, given by

p(ρ, ε) = (Γ− 1)ρε , (5.5)

with the adiabatic index set to Γ = 5/3.

5.2.2 Training and pruning

All neural networks considered in this work are trained with the Adam optimizer
with an initial learning rate of 10−3 and the MSE loss function, using mini-batches of
size 32. This learning rate is the suggested default for the Adam optimizer, although
we have performed a line search and considered the learning curves for learning rates
on a logarithmic grid to verify that this was the optimal choice for our application.
We employ a learning rate scheduler during training. Specifically, if the loss in
the previous 10 epochs did not improve upon the best loss value recorded so far
by a certain threshold factor, the learning rate is decreased by multiplying with a
factor between 0 and 1. We do not employ a full neural architecture search due
to its computational complexity, but determined satisfactory architectures based
on tuning procedures on small grids of interesting hyperparameter combinations.
Since the training and test sets are sampled from the same distribution and can be
made arbitrarily large in size, we did not easily observe overfitting during training.
Eventually, we decided to use an NN with two hidden layers with 600 and 200 hidden
neurons, respectively, and with sigmoid activation fuctions. Since this architecture is
also used by Ref. [23], we can make a fair comparison between the observed results
during training. We use a training set of 80 000 examples and a test set of 20 000
examples.

We trained the NN until a satisfactory MSE loss was obtained and the learning
rate reached a specified small value indicating that the network converged to a local
optimum. After training, we measure the performance of the network on newly
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generated data samples using three different metrics:

ℓ1(y, ŷ) = 1
n

n∑
i=1
|yi − ŷi| (5.6a)

ℓ2(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 (5.6b)

ℓ∞(y, ŷ) = max
i
|yi − ŷi| . (5.6c)

In case y and ŷ are tensors rather than vectors, the above mean and max operations
are taken across all axes. The ℓ2-norm coincides with the MSE loss and hence gives
insight into the training error. The other metrics provide important insights into
the performance of the model for simulations. That is, the ℓ1 and ℓ∞ errors indicate
the absolute deviations from the ground truth which are propagated throughout the
simulation. The errors obtained with our NN are shown in Table 5.2.

Since we are interested in deploying NNs which can be evaluated efficiently, we
explored the possibility of reducing the number of parameters in the network by
pruning neurons. We have applied the neuron pruning scheme given by Algorithm 1.
Figure 5.2 shows the performance of the NNs obtained by pruning a single neuron
from our original, trained NN for all hidden neurons across the two layers compared
to the original performance (dashed line). It is clear that the network has a lot of
redundancy, especially in the second layer, since neurons can be pruned without a
significant reduction in accuracy. We stopped the pruning scheme when fine-tuning
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Figure 5.2: Performance of NNs obtained by pruning a single neuron from an NN with 600
and 200 hidden neurons, of which the performance is indicated by the dashed line.

(retraining) the network became computationally too expensive and infeasible. After
pruning, we obtain a network with 504 and 127 neurons in the first and second
layer, respectively. Figure 5.3 shows the same information as Figure 5.2 for the
pruned network. The network we obtain no longer has any redundancy, as pruning
a neuron would lead to a decrease of around two orders of magnitude in loss value.
Remarkably, we were unable to achieve a similar performance by training an NN with
an identical architecture from scratch. Hence, pruning proved to be a viable scheme
to obtain balance between accuracy and efficiency. Table 5.2 compares the results of
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Figure 5.3: Performance of NNs obtained by pruning a single neuron from the NN obtained
at the end of the pruning scheme with 504 and 127 hidden neurons, of which the performance
is indicated by the dashed line.

the different NNs, also taking the work of Ref. [23] into account. We observe similar
error measures as Ref. [23]. Moreover, we notice that the pruned network achieves a
1.85× reduction in the number of parameters. At the same time, the network slightly
improved its performance, due to the fine-tuning (retraining) we applied after each
pruning iteration.

Table 5.2: Errors between true values and predictions of NN.

Network h1 h2 #params (∆p)ℓ1 (∆p)ℓ2 (∆p)ℓ∞

Ref. [23] 600 200 122 801 3.84× 10−4 – 8.14× 10−3

Ours 600 200 122 801 2.67× 10−4 2.19× 10−7 9.18× 10−3

Ours (pruned) 504 127 66 279 2.66× 10−4 1.88× 10−7 7.95× 10−3

We check the performance of the model by plotting the reconstruction error in
Figure 5.4. That is, we sample primitive variables from the range

ρ ∈ (0.05, 10) (5.7a)
ε ∈ (0.1, 2) (5.7b)

and fix v = vx = 0.35. We perform the P2C to obtain the corresponding conservative
variables which are used as input to the NN. Afterwards, we compare the absolute
difference between the original and reconstructed pressure values. Overall, the
performance of the network is quite robust across the considered parameter space.
We have noticed that the largest errors arise from values close to the origin, i.e. when
all the primitive variables are small. In this case, the conservative variables are small
as well, which can easily lead to rounding errors in the computation of the NN, likely
causing the results to deviate significantly from the ground truth. However, such
situations are unlikely to occur in our simulations as they constitute an unphysical
state.
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Figure 5.4: Reconstruction errors of NNC2P in the training domain.

5.2.3 Performance in simulations

After training, we deploy the NN in Gmunu to determine its performance in simulations.
As mentioned in Section 4.3, we adopt a simple implementation and export the
weights and biases of the NNs to a CSV file which is read at the start of the simulation.
The NN computations are reproduced through the built-in matrix multiplication
function and the activation functions are implemented from scratch. Afterwards, we
assess the performance of the NNC2P scheme by comparing it with the Kastaun
rootfinding scheme in two simple GRHD test simulations in 1D and in flat space-time.

Smooth sine wave

First, we consider the smooth sine wave problem [37]. Since the solution of this
problem can be expressed analytically, it allows us to test the accuracy of the NNC2P
method compared to the Kastaun scheme. Generally, the problem is formulated in
2D with the initial condition

ρ0 = 1 + A sin [2π (x cos θ + y sin θ)] , (5.8a)
p = 1 , vx = v0 , vy = 0 . (5.8b)

We consider a 1D version of the problem by fixing y = 0, and consider the domain
to be x ∈ [0, 1]. Moreover, we set θ = 0, A = 0.2 and v0 = 0.2. The exact solution
can be expressed analytically by

ρ = 1 + A sin [2π ((x cos θ + y sin θ)− (vx cos θ + vy sin θ)t)] , (5.9a)
p = 1 , vx = v0 . (5.9b)

The system is numerically evolved until t = 5 on a grid of size N = 128. Details
of the solvers are given in Ref. [37]. The evolved variables are shown in Figure 5.5
together with the analytic solution. Both the Kastaun scheme and the NNC2P
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scheme agree with the exact solution. The absolute errors are shown in Figure 5.6,
which shows that the NNC2P method achieves a similar accuracy as the Kastaun
scheme.
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Figure 5.5: Solution of the smooth sine wave at t = 5 with N = 128.
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Figure 5.6: Absolute errors of Kastaun and NNC2P schemes in the smooth sine wave problem.

We report the order of convergence of both schemes. That is, we study the
behaviour of the absolute errors as a function of the grid size N , following the
discussion presented in Ref. [37]. More specifically, we are interested in the scaling
of the relative numerical errors as a function of the grid size, δN , which we define as

δN =
∑N

i=1 |ρ̂i − ρi|∑N
i=1 |ρi|

, (5.10)

where ρ, ρ̂ represents the density of the exact solution and the numerical approxima-
tion, respectively. The convergence rate is defined as

RN = log2

(
δN/2
δN

)
. (5.11)

We show these quantities, varying N on a logarithmic scale, in Figure 5.7. While both
the original Kastaun scheme and NNC2P exhibit close to second-order convergence
for lower grid sizes, we notice that the NNC2P method loses this second-order
convergence for higher grid sizes, and essentially saturates at N = 1600. This is
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likely ascribed to the fact that the computations of the NN are independent of the
resolution of the grids in the simulation. Therefore, the error of the NN is dominating
the numerical error for larger grid sizes. The Kastaun scheme does not suffer from
this and exhibits second-order convergence across all grid sizes.
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Figure 5.7: Convergence results for the Kastaun and NNC2P schemes for the smooth sine
wave problem.

Shocktube problem

We also compare the accuracy of our implementation in a more demanding problem
involving a discontinuity. In the well-known 1D shocktube problem, we consider a
Riemann problem over the domain x ∈ [0, 1] with two different states given by

(ρ, p, vx) =
{

(10, 40/3, 0) if x < 0.5 ,

(1, 0, 0) if x > 0.5 ,
(5.12)

The system is evolved for t = 0.4 seconds and uses a grid of size N = 16 with
an adaptable mesh that gets refined during simulations. Further details about the
numerical set-up can be found in Ref. [36]. The solution can be computed exactly
using the methods discussed in Ref. [74]. The final profile is shown in Figure 5.8 along
with the exact solution. The NNC2P scheme is able to approximate the discontinuity
and coincides closely with the Kastaun scheme. The absolute deviations on the
pressure of both schemes is shown in Figure 5.9. The accuracy of the NN around
the center of the domain is comparable with the errors that are obtained with
Kastaun’s scheme. However, at the borders of the domain, the error of the NN seems
to dominate the accuracy of the NNC2P method. Indeed, the errors obtained at
the edges of the domain are similar to the average absolute deviation of the NN,
as reported in Table 5.2. Kastaun’s scheme therefore delivers a superior accuracy
compared to the NNC2P method for this more challenging simulation.

Besides comparing the accuracy of the schemes, we also compared the timing of
both methods. However, we delay the discussion of this timing test to Section 5.3.2,
where we also include tabulated look-up methods in the comparison.
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Figure 5.8: Solution of the shocktube problem at t = 0.4 with N = 528.
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Figure 5.9: Absolute errors of the Kastaun and NNC2P schemes in the shocktube problem.

5.3 NNC2P with tabulated EOS

The tests performed in the previous section merely demonstrate the feasibility of
replacing the C2P with an NN, using an analytic EOS for simplicity. However, as
discussed in Section 3.2.2, realistic simulations make use of tabulated EOS. Therefore,
we extend our analysis and consider tabulated EOS in this section.

To compare the performance of an NNC2P scheme in the context of tabulated
EOS, we perform the following experiment. We simulate the smooth sine wave and
shocktube problems with the ideal-fluid EOS, but infer the EOS from a mock table
of values rather than its analytic expression. Therefore, we can rely on the same NN,
since the physics does not change compared to the set-up of the previous section.
This enables us to directly compare the efficiency of the NNC2P scheme to the
methods used to evaluate tabulated EOS, which are more costly than evaluating an
analytic EOS.
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5.3.1 Generating the mock tabulated EOS

The mock table is constructed as follows. First, recall that the output values of
the EOS tables are functions of the density ρ, the temperature T and the electron
fraction Ye. The electron fraction is not relevant for ideal fluids, as it is only relevant
when microphysical effects are taken into account. Hence, Ye is a dummy variable
for our purposes. The temperature can be inferred from the specific internal energy
density through the thermodynamic relation

ε = 1
Γ− 1NAkBT , (5.13)

where NA = 6.022× 1023 is Avogadro’s number and kB is the Boltzmann constant.
Due to the units employed in Gmunu, we set kB = 1 and express temperature in units
of megaelectron volts (MeV). As before, we set Γ = 5/3. Since ε is contained in the
range (0, 2.02) for the GRHD simulations considered here, the temperature takes
values in the range

T ∈
(
0, 2.24× 10−24

)
. (5.14)

The EOS tables use grids of the input variables, where ρ and T are tabulated on
a logarithmic grid (in base 10) and Ye with a linear grid. To construct the table,
we therefore choose a certain size for these grids, denoted by nρ, nT and nYe . The
input variables are therefore constrained to the range determined by Eq. (5.1), which
results in the domain

log ρ ∈ (−307.653, 1.004) (5.15a)
log T ∈ (−307.653,−23.650) (5.15b)

Ye ∈ (0, 1) , (5.15c)

where the lower bound of log ρ and log T is determined by machine precision. After-
wards, we determine ε, p and c2

s through the known analytic relations, i.e. Eq. (3.7),
Eq. (3.9) and Eq. (5.13).

Microphysical EOS have 19 columns in total, of which only three (ε, p, c2
s) were

just discussed. The remaining columns provide thermodynamic relations (entropy,
enthalpy,...), compositions of chemical species and chemical potentials. Each column
has shape (nρ, nT , nYe). To fully replicate the microphysical EOS, we hence provide
dummy values for the other columns. All variables are put in an HDF5 file and we
write a custom function in Gmunu that is able to process our mock EOS table and
infer from it during simulations.

We choose the size of the EOS table based on common sizes of EOS tables, which
we infer from the EOS tables provided by Ref. [26]. We consider the SLy4 EOS
as example. This table has (nρ, nT , nYe) = (391, 163, 66) such that each individual
column of the EOS table contains 4 206 378 entries. The mock EOS table that we
generate hence has a size of 834 MB.

We check our implementation of the mock EOS table in Figure 5.10. For
the smooth sine wave, a comparison between the evolved variables obtained with
the analytic EOS and the tabulated EOS shows that the errors introduced by the
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tabulated methods is negligible compared to the errors reported in Figure 5.6. For the
shocktube, it is more instructive to consider the accuracy of the obtained pressure for
the mock tabulated EOS. We find that the results are comparable to those obtained
with Kastaun’s scheme using the analytic EOS. Therefore, we are guaranteed that
using the tabulated form of the EOS has a negligible impact on accuracy for the
simulations that we consider here.
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Figure 5.10: Performance of the Kastaun scheme with a mock table for the ideal-fluid EOS.
Left: Smooth sine wave problem. Right: Shocktube problem.

5.3.2 Timing measurements

After establishing the accuracy of the NNC2P method compared to existing algo-
rithms, we measure the speed2 of the methods discussed above for the smooth sine
wave and shocktube problems. The results are shown in Table 5.3.3 We measure the
efficiency of the methods in two ways. First, we measure the amount of iterations
that are completed each second (its/s) during the simulation. However, this is a
rather unreliable and noisy measure, which moreover depends on the size of the grid,
which changes during shocktube simulations since Gmunu uses an adaptable mesh
refinement technique. Therefore, we also consider the time-to-completion (TTC),
i.e. the total integration time4 required to finish the simulation, since this is in line
with our goal of speeding up the simulations. As such, the TTC measure is the most
informative and robust measure out of the two. The timing measurements reported
below are averaged over several repetitions.

The timings of the methods in the simulations considered so far are shown in
Table 5.3. We find that the NNC2P scheme is around 50 times slower than the
Kastaun scheme making use of the analytic expression for the EOS in the smooth

2We run the code using an Intel(R) Core(TM) i5-8250U CPU, with 4 cores at 1.60GHz and 8
GB RAM. However, simulations run on a single core to have reliable timing measurements.

3For simplicity, we benchmark all methods on the first 1 000 iterations of the shocktube problem
to reduce the influence coming from the adaptable mesh refinement.

4This excludes initialization of Gmunu and any I/O process, such as reading the EOS tables. For
large-scale simulations, reading the EOS tables is expected to take up a negligible fraction of the
total simulation time.
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sine problem, whereas it is around 20 times slower at solving the shocktube problem.
When the Kastaun scheme instead relies on the mock tabulated version of the EOS,
the NNC2P scheme is around 4 to 5 times slower than the existing methods.

Table 5.3: Timing measurements of the Kastaun scheme, using an analytic or tabulated EOS,
and NNC2P scheme in GRHD simulations.

Sine wave Shocktube
Speed (its/s) TTC (s) Speed (its/s) TTC (s)

Analytic EOS 2561.80± 24.17 0.10± 0.001 615.36± 19.11 1.77± 0.05
Tabulated EOS 218.50± 35.34 1.24± 0.19 133.00± 40.22 7.63± 0.11
NNC2P 52.62± 1.84 5.22± 0.27 40.20± 7.19 36.31± 0.68

5.4 NNEOS

Besides replacing the entire C2P transformation with a deep learning component,
we can also consider optimizing another central algorithmic step. As discussed in
Chapter 3, tabulated EOS can be costly to evaluate and a source of numerical errors.
Therefore, in this section, we explore whether it is possible to improve the evaluation
of the EOS with an ML model, again taking NNs as test case.

5.4.1 Data preprocessing

As discussed in detail in Section 3.2.2, an EOS table provides a mapping from
three input variables, log ρ, log T and Ye, to a collection of physical quantities of
interest. Here, we restrict ourselves to three columns which are most important for
simulations: the pressure p, the specific internal energy density ε and the speed of
sound c2

s, leading to the architecture shown in Figure 5.1.
As a test case, we work with the SLy4 tabulated EOS provided by Ref. [26]. The

input features of this table take values in the range

log ρ ∈ (3.02399601, 16.02399601) (5.16a)
log T ∈ (−3, 2.4) (5.16b)

Ye ∈ (0.005, 0.655) . (5.16c)

We manually remove negative c2
s values from the EOS table, as they are unphysical.

Afterwards, we take the log values (in base 10) of the c2
s column such that its range

is comparable to the range of the p and ε columns. Afterwards, the output labels lie
within the range

log p ∈ (19.02463658, 33.15270695) (5.17a)
log ε ∈ (17.42022108, 33.74498022) (5.17b)

log c2
s ∈ (16.57442573, 21.18058849) . (5.17c)

51



5. Machine learning for the C2P conversion

Furthermore, we convert the 3D format of the table into rows of examples to train
the NN. Since the input variables have different ranges, we normalize the features of
the training data by subtracting the mean and dividing by the standard deviation of
each variable. Since the EOS table provides over 4 million examples, we train the
NN on 5% of the entire dataset obtained through random sampling and determine
the generalization of the network after training.

5.4.2 Architecture design

To design the NNEOS architecture, we focus our attention on smaller, and hence
faster, architectures. Given the observation from the previous section that NNs are
costly to evaluate in our simulations, we consider whether an architecture can be
designed that provides a balance between speed and accuracy for simulations in
Gmunu. Therefore, we adopt the following strategy to design our NN. Before training,
we study which sizes of the NN are able to achieve a speed-up in the Fortran code.
Once the appropriate size is determined, we train the architecture and assess its
accuracy in simulations.

For simplicity, we restrict ourselves to architectures with one hidden layer or
two hidden layers containing an equal amount of hidden neurons and investigate
their efficiency at predicting the EOS values as a function of the hidden layer size.
We perform a grid search over the size of the hidden layers and the activation
functions, which are taken to be either sigmoid or ReLU. We expect the ReLU
activation function to be more efficient to compute than the sigmoid, resulting in
faster NNs. Each architecture is implemented and tested in Fortran directly after
randomly initializing the weights without training the network, since we only want
to estimate the speed of the NNs. The inference efficiency is measured in an artificial
test case, where the Gmunu environment is initialized with a single gridpoint. We
measure the time it takes for each NNEOS architecture to predict 1 000 000 random
input data sampled from the range of the EOS table. The timings are compared
to those of the look-up procedure implemented in Gmunu, which uses the trilinear
interpolation code given in Ref. [75] and discussed in Appendix B. We report the
average prediction time with one standard deviation for each architecture, averaged
over 10 repetitions, in Figure 5.11. The gray shaded region shows the timing results
of the interpolation method, again with one standard deviation. As expected, the
ReLU activation is faster than the sigmoid activation function. We notice that only
very small architectures are able to provide a faster replacement of the interpolation
method.

5.4.3 Performance in simulations

To keep a balance between speed and accuracy, we will consider the performance of
an architecture with two hidden layers of size 20 with ReLU activation functions in
a simulation.

We train the NNEOS architecture with a similar set-up as the NNC2P architecture
until convergence, which is determined by reaching a learning rate smaller than 10−8.
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Figure 5.11: Timing results of the NNEOS architectures implemented in Fortran compared
to the interpolation method.

The errors are shown in Table 5.4. The errors between the training set and the entire
table are comparable, except for the error on the speed of sound in ℓ∞ norm which
is overall quite high. However, this can be partially attributed to the fact that the
tabulated speed of sound values are highly irregular or unphysical in some regions of
the parameter space.

Table 5.4: Errors of an NNEOS architecture with two hidden layers containing 20 hidden
neurons and ReLU activation functions. The NN is trained on a subset containing 5% of the
SLy4 EOS table.

∆ log p ∆ log ε ∆ log c2
s

Training dataset

ℓ1 2.17× 10−2 3.40× 10−2 4.51× 10−2

ℓ2 8.38× 10−4 1.72× 10−3 4.72× 10−3

ℓ∞ 1.82× 10−1 3.66× 10−1 1.67× 10−0

Entire table

ℓ1 2.17× 10−2 3.40× 10−2 4.52× 10−2

ℓ2 8.41× 10−4 1.72× 10−3 4.83× 10−3

ℓ∞ 1.92× 10−1 3.73× 10−1 5.2 × 10−0

After training, we export the trained model to Gmunu to assess its performance in
simulations. We compare the results of a simulation of a spherically symmetric, 1D
neutron star simulation using both the tabulated EOS with look-up procedures and
its NNEOS replacement. Since the error on the pressure values between the training
dataset and the entire EOS table are comparable, we consider a minimal substitution
in the test simulation. That is, only the pressure values computed by the NN are
used during the simulation, and we rely on the look-up procedure to compute the
energy and speed of sound. The evolved values of the density and specific internal
energy density, converted to cgs units, are shown in Figure 5.12. The introduction of
the NNEOS architecture clearly leads to numerical artefacts in the obtained solution.
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Therefore, the architecture that we have considered does not seem capable enough
to approximate the EOS to a sufficient accuracy. Since our architecture was chosen
based on its efficiency, we conclude that an NNEOS replacement of microphysical
EOS is unlikely to accelerate GRMHD solvers.
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Figure 5.12: Comparison between solutions for a 1D neutron star simulation obtained with
the interpolation and NNEOS methods.

5.5 Hybrid methods

Finally, we consider a hybrid approach that unifies Kastaun’s C2P scheme with an
NN. Our aim is to find a framework that is able to combine the best of both worlds.
The Kastaun scheme has advantages over an NN, such as guaranteed accuracy and
robustness. However, to assure that the solution will be found, the scheme searches
for the root of its master function in a relatively large interval. Hence, the rootfinding
methods involve multiple iterations which can be costly to compute. We can leverage
ML to narrow this search space to reduce the amount of rootfinding iterations and
EOS calls to speed up the C2P conversion.

First, we apply this idea in the smooth sine wave and shocktube simulations.
However, major improvements of the hybrid scheme are mainly expected in GRMHD
simulations. As discussed in more detail in Section B.3, Kastaun’s C2P scheme in
GRMHD involves a nested rootfinding procedure. A first rootfinding method, usually
an NR method, determines a root µ+, which determines the range (0, µ+] in which a
second rootfinding procedure, usually Brent’s method, searches for the root µ from
which the primitive variables can be reconstructed. Properly restricting this domain
is important. For instance, the root may not be contained in a domain that is too
small, causing the C2P to fail. On the other hand, Kastaun’s master function can
contain kinks outside of the domain (0, µ+], which also might cause the scheme to
fail to converge.

Our goal is to implement a hybrid approach which bypasses the first NR rootfind-
ing procedure by training an NN to predict an appropriate range to look for the root
µ that is provided to the second rootfinding procedure. Therefore, the architecture
we consider is quite similar to the NNC2P architecture and is therefore trained in a
similar way. The key difference is that the NN outputs a prediction of the root µ
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instead of the pressure p. The value of µ is determined by

µ = 1
Wh

, (5.18)

where W (vi) is the Lorentz factor and h(ρ, ε) is the enthalpy. Therefore, µ can be
computed if the primitive variables are known, such that we can use the same data
generation technique considered for the NNC2P method. While the NNs compute
an estimate of the root µ, Brent’s method takes an interval (µ−, µ+) as a starting
guess. Therefore, we have to convert our point estimate into an interval. Here, we
artificially determine this interval by specifying a fixed width w, such that the NN
predicts the range

(µ̂− w, µ̂ + w) , (5.19)

where µ̂ is the prediction of the NN. We take the width to be either 0.1 or 0.01. In
our tests performed below, this ensures that the roots are contained in our predicted
intervals. Since w = 0.1 creates a relatively wide interval as initial guess, this
reflects a situation in which the NN is uncertain about its estimate. The latter width
w = 0.01 provides a smaller interval, reflecting the scenario where the NN is confident
in its prediction. While this implementation is currently quite ad-hoc, we envision
future extensions that determine the range in a more sophisticated manner, taking
the uncertainty of the trained NN into account. Moreover, this ad-hoc procedure
allows us to study the influence of the width of the interval on the performance of
the method in a controlled manner.

The architecture we consider for this proof of concept consists of two hidden
layers, each containing 20 neurons and using ReLU activation functions. We have
deliberately chosen to work with small networks, since the idea is to leverage the
speed of the NNs and rely on the Kastaun scheme to improve the accuracy to the
desired level. Since Kastaun’s master function has a unique root, we are assured that
our scheme does not alter the end result of the simulation as long as we ensure that
the roots are bracketed, i.e., the width of the predicted interval is chosen sufficiently
large enough. Therefore, the accuracy of the C2P scheme is not compromised by the
NN prediction.

5.5.1 GRHD simulations

First, we implement a hybrid approach for the C2P scheme in GRHD and apply it
to the smooth sine wave and the shocktube problems of GRHD. As mentioned, we
generate the training data using the same principles from Section 5.2. We sample
primitive variables, from which the conservative variables and µ can be computed.
We refer readers to Section 5.2 for a thorough discussion on our training procedure.
Since our main intent is to apply the NN assist to GRMHD simulations, the GRHD
tests merely serve as verification of the validity of our implementation. We fix the
width parameter w of the interval to 0.01. The average number of iterations of
Brent’s method for both the standard and the hybrid implementation of Kastaun’s
C2P scheme is shown in Table 5.5. Using the analytic ideal-fluid EOS, we obtain, on
average, 1886 its/s and a TTC of around 0.164s, which is slightly slower than the
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standard Kastaun scheme. While slightly reducing the average number of iterations
required to converge, computing the output of the network is likely more costly than
a single iteration of the rootfinding procedure in this case.

Table 5.5: Average number of iterations of Brent’s rootfinding method in GRHD.

Standard Hybrid
Sine wave 5.55± 0.51 4.55± 0.49
Shocktube 3.80± 1.98 3.17± 1.58

5.5.2 GRMHD simulations

Moving on to GRMHD simulations for the first time in this thesis, we first point out
key differences that arise from including the electromagnetic contributions in the
simulations. First, all simulations take place in 3D. As a result, the NNs take Sy, Sz

as input values on top of Sx. Moreover, the magnetic field itself is an independent
variable as well, such that we gain three more input variables. Since we will consider
a test simulation in flat space-time, the metric γij can be neglected for our purposes.

Concretely, we consider a simple test case involving an Alfvén wave on a 1D
computational domain [0, L] [37, 76]. The magnetic field is uniform and given by

Bx = B0 , By = A0B0 cos(kx) , Bz = A0B0 sin(kx) , (5.20)

where k = 2π/L is the wave vector. The initial condition furthermore uses

ρ = 1 , p = 0.5 , (5.21)
vx = 0 , vy = −vAA0 cos(kx) , vz = −vAA0 sin(kx) . (5.22)

where the speed of the Alfvén wave vA is a complicated expression and is given by
Eq. (118) of Ref. [37]. We fix A0 = 1, B0 = 1 and consider a domain with L = 1.
The detailed set-up of the integration is given by Ref. [37]. The domain is subdivided
into N = 128 grid points and the equations are integrated for one period, i.e. until
t = 2.

We again rely on the ideal-fluid EOS. As before, we use the analytic expression as
well as the mock tabulated version to evaluate the EOS. As mentioned, the standard
formulation of Kastaun’s scheme involves a nested rootfinding procedure. The first
procedure, the NR scheme, takes 18 iterations to converge at each time step and
for each grid point. The initial condition for Bz of the Alfvén wave and its value at
t = 2, obtained with the standard Kastaun scheme, are shown in Figure 5.13.

Data generation and training

Compared to the GRHD test simulations, we adapt our data generation technique.
That is, rather than generating training data by relying on the GRMHD equations
and the P2C transformation, we run the simulation and save the relevant input
and output values. After the simulation, we train an NN on this dataset. This
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Figure 5.13: Solution of the Alfvén wave using the standard Kastaun scheme.

technique has several advantages over the one previously used in the GRHD tests.
First, it is simpler in formulation and execution. Since we have to keep track of eight
independent variables in the GRMHD simulations, training on a dataset uniformly
sampled from an appropriate range requires more training data and becomes more
costly. We can train an NN more efficiently for a specific simulation by training
it on samples generated by that simulation. Second, generating samples from a
uniform prior requires us to specify the range to sample from for each independent
variable. While this can easily be achieved for well-known and small-scale test
simulations, this becomes infeasible for large-scale and realistic simulations. Third,
we envision future applications which improve their performance concurrently with
running simulations through online learning. These online learners have to learn
a mapping directly from data generated by simulations. Therefore, we investigate
a first step towards such learners by training NNs in an offline manner on data
generated from simulations. Specifically, we run the Alfvén wave simulation during
which the conservative variables, the magnetic field components and the solutions of
the root of the Kastaun scheme are saved to an external file. Afterwards, we train
an NN to approximate a mapping from the conservative variables to the root.

Since the goal of the NN assist is to speed up the overall time-to-completion of
the Kastaun scheme, we have deliberately chosen to work with relatively small (and
hence, efficient) NNs. Therefore, we investigate simple architectures with two hidden
layers each containing 20 neurons and using sigmoid or ReLU activation functions.

Analytic EOS

First, we consider the performance of the NN assist method in the Alfvén wave test
simulation using the analytic expression for the ideal-fluid EOS. The results are
shown in Table 5.6. All values reported here and below are obtained by averaging over
3 repetitions. Besides circumventing the NR rootfinding procedure, the NN assist is
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also able to reduce the amount of iterations of the second rootfinding procedure. We
notice that the amount of iterations saved depends on the uncertainty of the NN,
with the smaller width saving an extra iteration. Moreover, the NN is around 13%
faster with the ReLU activation function. Comparing the TTC between the standard
implementation and the fastest hybrid implementation, we achieve a speed-up of
28%.

Table 5.6: Timing results for the NN assist, using an analytic EOS.

Method Activation Width Rootfinding its Speed (its/s) TTC (s)
NR Brent

Standard – – 18 6.66± 0.47 1085.42± 51.50 4.57± 0.08
Hybrid Sigmoid 0.1 – 5.66± 0.47 1178.42± 41.85 4.19± 0.13
Hybrid Sigmoid 0.01 – 4.67± 0.47 1200.00± 97.10 4.05± 0.09
Hybrid ReLU 0.1 – 5.66± 0.47 1333.67± 121.04 3.70± 0.17
Hybrid ReLU 0.01 – 4.66± 0.47 1363.78± 208.55 3.56± 0.15

Tabulated EOS

Next, we consider the Alfvén simulation where we use the mock tabulated ideal-fluid
EOS discussed in Section 5.3 instead of the analytic expression. The results are
shown in Table 5.7. We notice that the speed advantage of the ReLU function is less
pronounced, likely since the tabulated methods cause the C2P schemes to overall
become less efficient. Nevertheless, the NN assist offers a potential speed-up of up to
25% in this case.

Table 5.7: Timing results for the NN assist, using the tabulated version of the EOS.

Method Activation Width Rootfinding its Speed (its/s) TTC (s)
NR Brent

Standard – – 18 5.58± 1.69 207.57± 16.69 23.48± 0.54
Hybrid Sigmoid 0.1 – 5.56± 1.65 227.71± 95.10 20.83± 0.09
Hybrid Sigmoid 0.01 – 5.46± 1.59 252.22± 14.90 19.06± 0.16
Hybrid ReLU 0.1 – 5.56± 1.64 227.29± 22.99 20.79± 0.22
Hybrid ReLU 0.01 – 5.46± 1.59 254.33± 21.34 18.84± 0.19
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Figure 5.14: Speed of the NN assist method as a function of the size of the NN. The
architectures considered have two hidden layers of equal size.
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While the above results are obtained with an NN with two hidden layers, each
having 20 hidden neurons, we also considered the impact of changing the size of the
hidden layers on the speed of the NN assist compared to the C2P using interpolation
routines. The results of this analysis are shown in Figure 5.14.5 We notice that for
increasing size of the networks, we again find that networks with a ReLU activation
function are faster than those using a sigmoid. Most likely, the efficiency of the C2P
conversions is mainly impacted by computing the output of the network rather than
the rootfinding iterations for larger architectures. Moreover, we notice that across all
architecture sizes, the hybrid method is faster if the width of the predicted interval is
smaller, which agrees with our earlier observations. From the analysis, we conclude
that networks containing more hidden neurons are still able to achieve a speed-up of
the simulations, although this is a case-dependent issue and naturally depends on
the simulation considered. Therefore, future work has to investigate the results of
our methods in more realistic simulations.

5For clarity, we only show the errorbars for the TTC, as the amount of iterations per second is
generally a noisy measure of speed.
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Chapter 6

Discussion and outlook

After presenting our results in the previous chapter, we provide a critical reflection
on the use of ML algorithms for the C2P conversion. Finally, we conclude this thesis
by providing remarks on future implementations as well as possible extensions of our
work, taking other ML approaches into consideration.

6.1 Discussion
As our work directly extends that of Ref. [23], we first provide a comparison between
our results and those of Ref. [23]. Afterwards, we compare the three methods studied
in the previous chapter and reflect on their applicability to more realistic simulations
in future extensions.

6.1.1 Comparison with earlier work

The work presented in Sections 5.2 – 5.4 provided an extension of the work of Ref. [23].
Therefore, we provide a thorough and critical comparison between the methodologies
and results of both works.

NNC2P

Our results reported in Section 5.2 and Section 5.3 show discrepancies with those
reported in Ref. [23] which performed a similar analysis. In Table 2 of Ref. [23], the
authors show that an NNC2P surrogate model can yield a speed-up with a factor of
around 22 for an architecture with 600 and 200 neurons in the first, respectively second
hidden layer compared to interpolations of tabulated EOS. Our results indicated
that, instead, our NNC2P model was around 4 to 5 times slower, despite having only
504 and 127 hidden neurons, hence only having slightly over half as much parameters.
This discrepancy is likely the result due to three key differences between our methods
and those of Ref. [23], which we now discuss in more detail.

A first important difference is the programming language. Ref. [23] used a
hydrodynamics solver programmed in Python, whereas Gmunu is written in Fortran.
This change can already lead to different levels of optimization of central operations
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used in the algorithms, such as matrix multiplications used to perform inference on
the NNs. This can already influence a comparison between different techniques. As
a small demonstration of this claim, we investigate the speed of an NN compared
to an optimized interpolation method in both Fortran and Python. In Figure 5.11,
we discussed the efficiency of NNs compared to the interpolation methods used in
Gmunu for the tabulated EOS. We observed that an NN with a single hidden layer
of size 50 and ReLU activation functions is slightly slower than the interpolation
method. Here, we perform the same analysis in Python. To make a fair comparison,
we implement the interpolation routine used by Gmunu, which can be found in
Refs. [75, 77] in Python and optimize it with Numpy.1 We compare the timing of
this interpolation routine to that of our NN, which is evaluated using a method that
mimics the evaluation performed in Gmunu rather than relying on the built-in methods
of PyTorch. That is, we extract the parameters of the NN as vectors and matrices and
hard-code the computational steps that the NN performs in a function. The results
are shown in Figure 6.1. Besides the clear, overall speed advantage of Fortran, we
notice that the most efficient method differs between the two programming languages.
While this comparison only considers a specific application, it demonstrates that
a comparison of the efficiency of methods depends on the programming language
considered. Therefore, it is likely that the Kastaun C2P scheme with rootfinding
methods is executed more efficiently in Fortran than Python, which could result in
the observed discrepancy between our results and those of Ref. [23].
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Figure 6.1: Comparison between interpolation methods and NNEOS in Python and Fortran.

Second, the rootfinding C2P scheme that we considered differs from that used in
the analysis of Ref. [23]. The authors apply an NR scheme with master function

f(p) = pideal(ρ, ε)− p , (6.1)

with pideal representing the ideal-fluid EOS given by Eq. (3.7). Our scheme, on the
other hand, is that of Ref. [27] which uses a different master function and rootfinding
method, which could affect performance as well. Third, our comparison between
the NNC2P and interpolation methods for tabulated EOS (i.e., Section 5.3) uses

1Notably, these interpolation methods tend to be 20, respectively 25 times faster than SciPy’s
RegularGridInterpolator, respectively interpn, methods.
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a slightly different experimental set-up. In Ref. [23], the authors constructed a
tabulated EOS with mock values from the ideal-fluid EOS, as we have done here
as well. However, their EOS table has shape (nρ, nT , nYe) = (500, 500, 500) whereas
our table has shape (391, 163, 66). Therefore, each column of the mock EOS table
of Ref. [23] has 125 000 000 entries. Assuming that Ref. [23] only tabulated the
quantities of relevance in the GRHD test simulations considered (i.e., log ρ, log T ,
Ye, log ε, log p and c2

s), the table already requires more than 2 GB. Our table, on the
other hand, has only 4 206 378 entries for each column and takes around 830 MB of
memory while tabulating values for all 19 columns that are provided by a typical
EOS obtained from Ref. [26]. In particular, tabulating 500 values for the electron
fraction Ye seems excessive and hardly occurs in actual EOS tables. Therefore, it
appears that the EOS table used for the analysis of Ref. [23] is larger than those used
by realistic simulations, which could potentially further slow down the tabulated
methods and bias the comparison.

In the end, the accumulation of these affects likely results in our observation that
an NN as surrogate model for the entire C2P conversion is slower for an optimized
solver written in Fortran, such as Gmunu. Since most HPC codes are written in
Fortran, we believe that the experiments reported in this work are a more realistic
reflection of the actual performance of such NN surrogate models for future extensions.

NNEOS

Besides proposing the NNC2P algorithm, Ref. [23] also proposed the NNEOS algo-
rithm, where an NN approximates the quantities determined by the EOS. As a proof
of concept, only the ideal-fluid EOS was studied in Ref. [23]. Hence, the authors
use an architecture which takes ρ, ε as input and returns p as output. A second
architecture additionally outputs derivatives of the pressure, i.e. ∂p/∂ρ and ∂p/∂ε,
as these are used in the computation of the speed of sound c2

s as shown by Eq. (3.9).
Evaluating the EOS with an NNEOS model, the authors reported a speed-up of a
factor 3 to 7 for these two architectures compared to standard interpolation methods.

This analysis is again biased and leads to an optimistic conclusion which is
unrepresentative for realistic simulations. First of all, we again have to take into
account that the mock table for the ideal-fluid EOS used in Ref. [23] does not contain
all the dependent variables of the EOS and uses an unrealistic size. Furthermore, by
only considering the ideal-fluid EOS as proof of concept, the analysis ignores three
aspects that will affect the conclusions drawn from it. First, as discussed in Chapter 3,
the EOS tables take log ρ, log T and Ye as input rather than ρ and ε which already
alters the architecture that should be considered. Second, an NNEOS architecture
that has to replace a tabulated EOS should output all dependent variables that the
EOS provides which includes compositions, chemical potentials and thermodynamic
relations besides the pressure and its derivatives. Moreover, the authors did not
investigate the possibility of using automatic differentiation to predict the derivatives
of the pressure, which seems a promising and more efficient way of obtaining the
required derivatives. Third, the mapping that the NNEOS has to approximate
becomes more complicated when considering a tabulated EOS. In the ideal-fluid EOS,
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there exists a simple, analytic relationship between the input and output neurons,
such that an NN can easily learn the mapping to a high degree of accuracy. This
is not the case for a tabulated EOS, which implies that an NN must have a higher
capacity to learn the mapping to the same level of accuracy. Therefore, a realistic
replacement of microphysical EOS tables should consider deeper and wider networks,
which will significantly impact the performance of the NNEOS replacement.

The analysis presented in this work addressed two of these points. First, we
had a more representative estimate of the accuracy that can be attained with an
NNEOS replacement by training on data from a microphysical EOS, taking the
SLy4 EOS as example. Second, we considered an architecture that uses the correct
input variables. However, we did not yet include all possible output variables in
our experiments. Our observations seem to indicate that accelerating a Fortran
solver, such as Gmunu, is only possible with small architectures which turn out to be
incapable of approximating the EOS to a desirable degree of accuracy. We believe
that our experiments provide a more realistic setting for future extensions of this
approach. Therefore, our results seem to indicate that this proposed method is
unable to scale to realistic simulations.

6.1.2 Critical reflection on the proposed algorithms

Continuining the discussion of the previous section, we critically examine the ML
algorithms studied in this work.

In Section 3.3, we provided a few criteria taken from Ref. [28] to evaluate C2P
schemes, namely speed, accuracy and robustness. A scheme based on rootfinding
procedures comes with guaranteed accuracy, since these algorithms use a tolerance
parameter that stops the rootfinding procedure when a desired accuracy is achieved.
Additionally, the Kastaun scheme is formulated in terms of a master function that
guarantees that the solution is unique. Moreover, the scheme is able to detect if
the evolved variables are physically invalid and applies corrections accordingly to
enforce a valid solution. Therefore, the Kastaun scheme provides a scheme with high
accuracy and robustness.

When using an ML model to replace a C2P scheme, we therefore have to consider
the impact of this replacement on these three criteria. ML models can potentially be
faster than existing methods due to their ability to learn from examples. Most ML
models are also flexible in design such that their capacity can be changed in order
to achieve a desired accuracy. This flexibility leads to a trade-off between speed
and accuracy that has to be studied experimentally. However, the most significant
risk associated with the replacement of rootfinding schemes with ML models lies in
the potential loss of robustness. In the NNC2P approach, the NN will be unable
to detect unphysical input and will still predict values for the primitive variables.
Moreover, if an input is provided from a region of the parameter space in which
the ML model has not been trained, we risk to make an inaccurate prediction that
propagates throughout the remainder of the simulation. This is demonstrated for
our pruned NNC2P network. In Figure 5.4, we showed the reconstruction error of
the network for values sampled from its training domain, which showed that the
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model was accurate on this domain. However, in Figure 6.2, we show the same
reconstruction error for a larger domain. We clearly notice that the NN is unable to
generalize well outside of the domain it is trained on, indicating that the method is
not robust. While this is obviously expected, as the network was not trained on values
from these regions, it shows that a feasible NNC2P model can only provide robust
predictions for input values inside of its training domain, which sets a limitation
on the applicability of the model. This is certainly undesirable as it might make
a simulation fail, wasting computational effort and having to resort to standard
algorithms again. Therefore, a faster C2P scheme without a guarantee of robustness
might turn out to be computationally more intensive in the end. Hence, ML models
that wish to replace the C2P should not sacrifice robustness.
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Figure 6.2: Reconstruction error of NNC2P outside of its training domain, indicated by the
white dashed lines.

Given this problem, we therefore proposed a hybrid scheme that integrates an NN
within the Kastaun scheme. Such a scheme takes a prediction, computed efficiently
by an ML model, and provides it to the rootfinding method of the Kastaun scheme
which improves the initial guess to the desired accuracy. An additional advantage of
this method is that we can sacrifice accuracy of the ML model in favour of speed,
since the rootfinding procedures guarantee that the end result is nevertheless accurate.
We have demonstrated that such a hybrid scheme can lead to a C2P scheme which is
around 25% faster for GRMHD simulations using interpolations on tabulated EOS.
Moreover, our tests are performed in a Fortran solver which implies that it provides
a realistic estimate of the potential of the method for more realistic simulations.

Finally, an important critical remark has to be made regarding the fact that
ML models have to be trained on data. This leads to two implications for future
applications of ML surrogate models in GRMHD simulations, not necessarily re-
stricted to the methods proposed here. First, the dependence on data implies that
ML models are EOS dependent. Since different microphysical EOS predict different
values for the dependent variables, a training dataset for an ML model considers a
specific EOS. As a result, if one wishes to use an ML surrogate model in simulations
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adopting different EOS, a different realization of the ML model has to be trained
for each EOS. This is another argument in favour of smaller models. Second, since
the C2P training data has to be generated from the P2C transformation, one has to
specify the range from which the training data has to be sampled. Whereas this was
possible within the simple test cases considered in this work, this becomes infeasible
for realistic simulations. Moreover, realistic simulations can cover a vast region of
the parameter space, such that we have to train on a large dataset which introduces
additional computational costs. Simulations likely only cover specific regions in the
parameter space, since the values of the evolved variables are correlated over time.
Training from data sampled from a uniform prior distribution is therefore not the
most efficient.

Our test case of the hybrid method tried to partially alleviate this problem by
changing the data generation technique. Instead of sampling training data from a
uniform distribution over the parameter space, we applied a distribution determined
by the simulations. Here, we have considered an extreme case where the training
data is sampled directly from the simulation itself. This data generation technique
avoids the need to determine the range of interest beforehand at the expense of
having to run a simulation to obtain the training data. As a result, the training data
is limited in range such that the NN can be trained efficiently, especially combined
with the fact that we use smaller architectures and rely on the Kastaun scheme for
accuracy. However, this likely results in a model with worse generalization such that
alternatives have to be explored that find a balance between a uniform prior and
training on simulation data.

6.2 Future work

After a critical reflection of the methods we have proposed and explored in this work,
we propose a few directions in which our work can be extended.

A first point is to improve the implementation of NNs in Fortran. We have made
several attempts already to optimize the Fortran implementation. First, we have
integrated the roseNNa library, which we introduced in Section 4.3, within Gmunu.
After comparing the timing between our hard-coded implementation and roseNNa,
we did not observe any noticeable difference. Besides, we have also changed the
matrix multiplication method used in our implementation. We have considered the
use of the BLAS package which offers optimized linear algebra operations [78]. Here
as well, we did not observe significant improvements. For future work, it would
be interesting to consider the results after integrating a more sophisticated library
within Gmunu, such as SmartSim discussed in Section 4.3.

Furthermore, we wish to apply our hybrid scheme to more advanced and challeng-
ing simulations. Such simulations offer new challenges for any ML surrogate model
since a wider range of the input variables is covered. Moreover, we gain additional
input nodes for the NN if we consider simulations with dynamical space-times and
in higher dimensions. Using a microphysical EOS adds further complexity to the
training dataset. It is interesting to check whether the scheme is still able to achieve
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an acceleration in more realistic scenarios.
Given the discussion of the previous sections, we believe that extensions of our

work should center around hybrid schemes that provide a robust method. We can
start by improving our proposed scheme by training an NN that outputs a distribution
rather than a single value to predict an initial bracket for the rootfinding methods in
a more sophisticated manner. NNs trained in a Bayesian setting are one possibility
to achieve this.

It can also be interesting to consider different training procedures. In the previous
section, we highlighted the drawbacks from training on uniformly sampled data and
training on data saved during a simulation. One could potentially investigate other
interesting schemes to sample training data that provides a trade-off between these
two methods. More interestingly, we could investigate the potential of using online
learning, where the ML model is trained concurrently with the simulation. This
provides another motivation to consider the integration of SmartSim, as it offers the
ability to perform online learning of ML models concurrently with running a Fortran
simulation.

Furthermore, we could take inspiration from physics-inspired neural networks
(PINNs), which have already been used in the field of fluid mechanics [79]. A PINN
is trained with a loss function that takes errors violating known physical constraints
into account. Most PINNs are used as surrogate models for partial differential
equations, where the traditional loss function consists of the errors on the differential
equation, the boundary condition, the initial condition and simulation predictions
and measurements. While the C2P is not a differential equation, future work can
borrow ideas from the field of PINNs and add physical prior knowledge to the loss
function to improve the generalizability of the model outside of its training domain.

Future work can also invent new schemes that combine the robustness of existing
C2P schemes in a more efficient manner than proposed here. Furthermore, we
have not yet explored alternative ML models that are potentially better suited
for our applications. For instance, we have briefly considered the use of recurrent
neural networks that iteratively improve their predictions until converging towards a
more accurate result. However, training these networks is much more challenging.
Moreover, to achieve a high accuracy, we need many hidden neurons that imply that
the method likely becomes computationally more expensive. Furthermore, this again
implies that we lose the robustness of the Kastaun scheme. Another interesting option
is to consider graph neural networks (GNNs) [80]. GNNs are a specific class of NN
architectures used to represent graphs. Hence, GNNs are suitable for structural data
with explicit, known relational structure. In our case, we could model each physical
variable of interest as a node in the graph and encode known dependencies, such
as equations that hold among a set of variables, as edges within the graph. Going
beyond deep learning, there is a plethora of other ML techniques to be considered
for our application. However, we remark that a major challenge in relying on other
ML techniques is that the models must easily be exported to the Fortran language,
which was feasible for NNs but might be harder to achieve for other ML models.
However, this problem can potentially be circumvented by the SmartSim library.

Furthermore, we remark that the work presented here only considered simulations
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in GRHD and ideal GRMHD. Future extensions ideally have to go beyond the ideal
MHD limit and moreover investigate the potential application of ML surrogate models
for the C2P conversion in simulations that, e.g., also take the neutrino transport
into account.

It can also be interesting to delve deeper into the idea of replacing the tabulated
EOS with ML models and its applications beyond the C2P problem. While we have
demonstrated that NN replacements are likely slower than existing interpolation
methods, ML models can offer other advantages. As mentioned before, tabulated
EOS are expensive in memory, with a standard EOS table easily taking more than
800 MB of memory, with tables of higher resolution going up to 2 GB. Therefore, we
can consider compression techniques that reduce the amount of memory required
to use tabulated EOS. An NN is one option, as we only have to load the weights
and bias parameters which are small in size even for larger and accurate networks.
However, other ML models may be more suitable for this application. For instance,
we can consider the use of support vector machines (SVM) for this problem. SVMs
can be applied to regression problems and have an advantage over NNs by being
built on top of the mathematically well-founded statistical learning theory. SVMs
are linear models that rely on the well-known kernel trick to be able to learn non-
linear mappings as well. Like the look-up procedures currently used for tabulated
EOS, SVMs are non-parametric models, meaning that their structure depends on
the provided training data. However, the look-up procedures, which are a form of
locally weighted or nearest-neighbours regression, have to retain all the provided
training data in order to make new predictions. SVMs, on the other hand, lead
to sparse models, where only a subset of the original training data (known as the
support vectors) is used for making predictions. As such, SVMs are attractive since
they combine the advantages of parametric and non-parametric models. Hence, an
approach relying on SVMs could potentially require less memory and still offer a
similar accuracy.

6.3 Conclusion

In this thesis, we have investigated the potential of leveraging machine learning (ML)
in order to speed up numerical relativistic hydrodynamics solvers to tackle challenges
in the field of gravitational wave astrophysics. Specifically, we have proposed three
methods to optimize the conservative-to-primitive (C2P) inversion, a central but
computationally expensive algorithmic step. First, we investigated the possibility
of replacing the entire C2P transformation with a neural network (NN), which
we referred to as NNC2P. We have successfully integrated this NN in the Gmunu,
a numerical solver written in the Fortran programming language. However, we
have demonstrated that the NNC2P method is slower than existing C2P schemes.
Specifically, schemes that use an analytic equation of state (EOS) are up to 50 times
faster than the NN, while schemes that rely on a tabulated EOS, which are generally
slower to evaluate, are still 4 to 5 times faster than the NN. Moreover, we presented
arguments that disfavour this technique, the most significant being the fact that the
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method is not guaranteed to be robust.
Second, we have investigated a method to replace the evaluation of the EOS

with an NN, which we called NNEOS, for its potential to provide faster evaluation
methods than the look-up procedures that are currently used for tabulated EOS. We
showed that it is infeasible to accelerate existing Fortran codes with this method
without sacrificing accuracy. However, future work can still consider extensions where
the EOS is replaced by ML models that can improve the robustness of evaluations
with an EOS table while requiring less memory.

Finally, we have proposed a novel, hybrid scheme that tries to optimally combine
the currently used schemes with the benefits of ML by learning to provide accurate,
initial estimates for the rootfinding methods used in existing schemes. We have shown
that this method offers a potential speed-up of around 25% in GRMHD schemes,
without compromising accuracy or robustness. Moreover, we have shown that our
scheme is able to learn directly from data provided by simulations, such that our
method can be further refined and improved by training the NNs in an online setting.
Therefore, this scheme improves upon state-of-the-art C2P schemes and seems a
promising method to explore in more detail in future work.
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Appendix A

GRMHD equations

In Chapter 3, we introduced the GRMHD evolution equations, written in the
conservative formalism:

∂C
∂t

+ ∇F (C) = S , (A.1)

Here, we give further details on the precise nature of these equations for the ideal
GRMHD case and the relation between conservative and primitive variables [28].
The conserved variables are

C = (D, Si, τ, Bi, DYe) , (A.2)

which contain the conserved variables that we introduced in GRHD as well as the
magnetic field Bi and the electron fraction Ye such that the present discussion holds
for GRMHD simulations making use of microphysical EOS. The primitive variables
are

P = (ρ, vi, ε, Bi, Ye) . (A.3)

As in the GRHD case, there exists a P2C transformation, given by

D = ρW (A.4)
Si = (ρh + b2)W 2vi − αb0bi (A.5)

τ = (ρh + b2)W 2 −
(

p + b2

2

)
− (αb0)2 −D , (A.6)

where h = 1 + ε + p/ρ is the enthalpy, W =
(
1− v2)−1/2 is the Lorentz factor and

α is the lapse function. The vector bµ is a derived quantity, for which the most
important relations are

αb0 = WBivi (A.7)

bi = Bi

W
+ αb0vi (A.8)

b2 = 1
W 2

(
B2 + (αb0)2

)
. (A.9)
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Appendix B

Algorithms and C2P schemes
used in Gmunu

B.1 Rootfinding algorithms

In numerical analysis, a rootfinding method is a numerical method to determine the
zeroes, also called roots, of a continuous function f(x). We will give a discussion for
one-dimensional functions only. Here, we discuss two algorithms that are used in the
C2P conversion in Gmunu, based on Ref. [34].

B.1.1 Brent’s method

Brent’s method, also called the Van Wijngaarden-Dekker-Brent method, is an example
of a bracketing method. These methods iteratively determine smaller intervals [a, b],
called brackets, that contain a root. An interval [a, b] is a bracket if f(a)f(b) < 0,
(i.e., the function f has opposite signs at the endpoints of the interval) such that the
intermediate value theorem guarantees that [a, b] contains a root of the function f .
In that case, we say that the root is bracketed. A first way of iteratively reducing the
brackets is by the bisection method, where the interval is divided into two smaller
intervals of equal size [a, c] and [c, b], with c = (a + b)/2 and determining which of
the two is a bracket. Another option is the regula falsi method, closely related to
the secant method, which instead uses

c = af(b)− bf(a)
f(b)− f(a) . (B.1)

The secant and regula falsi methods are generally faster than the bisection method and
can achieve superlinear convergence. However, the bisection method is guaranteed to
converge. Brent’s method is able to combine the superior convergence speed of the
secant method with the sureness of the bisection method by using a combination of
root bracketing, bisection and inverse quadratic interpolation. The latter uses three
prior points to fit an inverse quadratic function (with x being a quadratic function
of y) to determine the next estimate of the root. Additionally, Brent’s method has
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contingency plans in case the root is no longer bracketed after an update. If these
three points are (a, f(a)), (b, f(b)) and (c, f(c)), then the interpolation formula is

x = (y − f(a))(y − f(b))c
(f(c)− f(a))(f(c)− f(b)) + (y − f(b))(y − f(c))a

(f(a)− f(b))(f(a)− f(c)) (B.2)

+ (y − f(c))(y − f(a))b
(f(b)− f(c))(f(b)− f(a))

The next estimate for the root is determined by setting x = y(0), which gives

x = b + P/Q , (B.3)

where P and Q are determined by R, S, T , defined as

R = f(b)
f(c) , S = f(b)

f(a) , T = f(a)
f(c) . (B.4)

through the formulae

P = S[T (R− T )(c− b)− (1−R)(b− a)] , (B.5)
Q = (T − 1)(R− 1)(S − 1) . (B.6)

Brent’s method is the recommended choice of method for a general one-dimensional
function of which only the values and not its derivative or functional form are known.

B.1.2 Newton-Raphson

A well-known rootfinding algorithm is the Newton-Raphson (NR) algorithm. This
method requires that the derivative of the function df is known. When the derivative
can be evaluated, the NR method extends the tangent to the function evaluated at
the current estimate for the root, and uses the point where the tangent crosses the
horizontal axis as next estimate. Given a current estimate xi, the NR determines
the next estimate as

xi+1 = xi −
f(xi)
df(xi)

. (B.7)

The NR algorithm converges quadratically. This very strong convergence property
makes NR the method of choice for any function whose derivative can be evaluated
efficiently and whose derivative is continuous and non-zero in the neighbourhood
of a root. It is not advised to rely on the NR scheme in case the derivative has to
be approximated numerically, as this will decrease the order of convergence of the
method. Therefore, the NR method with numerical derivatives is always dominated
by Brent’s method for one-dimensional functions.

B.2 Trilinear interpolation
Microphysical EOS use a table of values provided at rectilinear grids. Therefore,
numerical techniques have to be used to obtain the EOS values at arbitrary points
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within this grid. Since each dependent variable of the EOS depends on three input
values (namely, log ρ, log T and Ye), relativistic hydrodynamics codes usually rely
on trilinear interpolation [81]. To simplify notation, we will present the trilinear
interpolation method for input values x, y and z and an output variable p.

Figure B.1: Eight-point stencil used in trilinear interpolation. Figure taken from Ref. [81]

When a new input point (x, y, z) is provided, for which the value p has to be
determined, trilinear interpolation performs a weighted regression using the eight-
point stencil around the input point, as shown in Figure B.1. The general formula
for trilinear interpolation is therefore

p(x, yz) = c0 + c1∆x + c2∆y + c3∆z + c4∆x∆y + c5∆y∆z + c6∆x∆z + c7∆x∆y∆z ,
(B.8)

where ∆x, ∆y and ∆z represent the separation between the provided input point
and the starting point p000 as shown in Figure B.1, viz.

∆x = x− x0
dx

, ∆y = y − y0
dy

, ∆z = z − z0
dz

. (B.9)

Here, xi, yi and zi determine the gridpoints of the table and dx, dy and dz refer to
the separation between the gridpoints in each direction, e.g. dx = xi+1 − xi. The
coefficients ci are determined by

c0 = p000 (B.10a)
c1 = p100 − p000 (B.10b)
c2 = p010 − p000 (B.10c)
c3 = p001 − p000 (B.10d)
c4 = p110 − p010 − p100 + p000 (B.10e)
c5 = p011 − p001 − p010 + p000 (B.10f)
c6 = p101 − p001 − p100 + p000 (B.10g)
c7 = p111 − p011 − p101 − p110 + p100 + p001 + p010 − p000 (B.10h)
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where we denote the eight-point stencil gridpoints as defined in Figure B.1. The
Fortran code of such a trilinear interpolation method can be found in Refs. [75, 77].

B.3 Kastaun’s C2P scheme

The C2P conversion currently adopted in Gmunu is based on that of Ref. [27] which
applies to both GRHD as well as GRMHD simulations. The procedure is summarized
in Ref. [37]. We specify the full routine for the GRMHD case. Readers are referred to
Appendix A for more details on the GRMHD equations. First, the following rescaled
auxiliary variables are computed:

q = τ

D
, ri = Si

D
Bi = Bi

√
D

. (B.11)

Next, we decompose the vectors along the directions determined by the magnetic
field:

ri
|| = blrl

b2 bi , ri
⊥ = ri − ri

|| . (B.12)

From this, we compute the following auxiliary quantity

r2 = riri , B2 = BiBi , B2r2
⊥ = B2r2 − (rlBl)2 . (B.13)

As mentioned, solving the C2P in GRMHD involves a nested rootfinding procedure.
The first rootfinding procedure uses the master function fa(µ)

fa(µ) = µ
√

h2
0 + r̄2(µ)− 1 , (B.14)

where we have defined the auxiliary functions

χ(µ) = 1/(1 + µB2) , (B.15a)

r̄2(µ) = r2χ2(µ) + µχ(µ) (1 + χ(µ))
(
rlBl

)2
, (B.15b)

and h0 is a lower bound for the relativistic enthalpy across the entire validity region
of the EOS employed. Since the derivative of the function fa can be expressed
analytically, an NR method determines the root µ+ of the function in the interval
(0, h−1

0 ]. Afterwards, a second rootfinding procedure takes the master function

f(µ) = µ− 1
ν̂ + µr̄2(µ) , (B.16)
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where we again introduce new auxiliary quantities

ν̂(µ) = max (νA(µ), νB(µ)) , (B.17a)

ν̂A(µ) = (1 + â(µ)) 1 + ε̂(µ)
Ŵ (µ)

, (B.17b)

ν̂B(µ) = (1 + â(µ))
(
1 + q̄(µ)− µr̄2(µ)

)
, (B.17c)

p̂(µ) = pEOS (ρ̂(µ), ε̂(µ)) , (B.17d)

â(µ) = p̂(µ)
ρ̂(µ) (1 + ε̂(µ)) , (B.17e)

ρ̂(µ) = D

Ŵ (µ)
, (B.17f)

ε̂(µ) = Ŵ (µ)
(
q̄(µ)− µr̄2(µ)

)
+ v̂2(µ) Ŵ 2(µ)

1 + Ŵ (µ)
, (B.17g)

v̂2(µ) = min
(
µ2r̄2(µ), v2

0

)
, (B.17h)

Ŵ (µ) = 1√
1− v̂2(µ)

, (B.17i)

q̄(µ) = q − 1
2B

2 − 1
2µ2χ2(µ)

(
B2r2

⊥

)
, (B.17j)

v2
0 = r2

h2
0 + r2 . (B.17k)

Note that, as indicated, the pressure has to be inferred from the EOS. In case
microphysical EOS are used, pEOS additionally depends on temperature T and
electron fraction Ye. In that case, computing p̂(µ) is a costly step, since one has
to transform the evolved specific internal energy density ε to the corresponding
temperature T , which involves another rootfinding procedure using the tabulated
EOS. Each call to the EOS moreover performs a trilinear interpolation, such that a
single iteration of Brent’s method can become quite costly in case tabulated EOS
are used.
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Neural network implementation
in Fortran

1 module mod_grhd_phys_neuralnet
2
3 !> Module that replaces the C2P conversion in GRHD with a neural network
4 use mod_physics
5 use mod_grhd_phys_parameters
6
7 implicit none
8
9 private

10
11 !> Specify the architecture (by default, we use two hidden layers)
12 !> The values hard-coded here are for the pruned neural network
13 integer, parameter :: INPUT_SIZE = 3
14 integer, parameter :: HIDDEN_SIZE_1 = 504
15 integer, parameter :: HIDDEN_SIZE_2 = 127
16 integer, parameter :: OUTPUT_SIZE = 1
17 logical, parameter :: USE_SIGMOID = .true. ! True for sigmoid, false for

ReLU
18
19 !> Define type that stores (information on) the weights and biases of the

neural network
20 type nn_table_t
21 double precision, dimension(:,:), allocatable :: weight0 ! Weights

first hidden layer
22 double precision, dimension(:,:), allocatable :: bias0 ! Bias first

hidden layer
23 double precision, dimension(:,:), allocatable :: weight2 ! Weights

second hidden layer
24 double precision, dimension(:,:), allocatable :: bias2 ! Bias second

hidden layer
25 double precision, dimension(:,:), allocatable :: weight4 ! Weights

output layer
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26 double precision, dimension(:,:), allocatable :: bias4 ! Bias output
layer

27 end type nn_table_t
28
29 type(nn_table_t) :: nn_tab
30
31 ! Public methods
32 public :: grhd_phys_neuralnet_init
33 public :: nn_predict
34
35 contains
36
37 subroutine grhd_phys_neuralnet_init(filepath)
38 !> Subroutine to initialize the module. Weights and biases should be in

the same directory (filepath) and have the names shown below
39 character(*), intent(in) :: filepath
40 character(len=256) :: fname = ’’
41
42 !> Initialize the neural network weights and biases here by reading the

CSV files
43 fname = trim(adjustl(filepath))//"/weight0_flat.csv"
44 call read_matrix(fname, HIDDEN_SIZE_1, INPUT_SIZE, nn_tab%weight0)
45 fname = trim(adjustl(filepath))//"/bias0_flat.csv"
46 call read_matrix(fname, HIDDEN_SIZE_1, 1, nn_tab%bias0)
47
48 fname = trim(adjustl(filepath))//"/weight2_flat.csv"
49 call read_matrix(fname, HIDDEN_SIZE_2, HIDDEN_SIZE_1, nn_tab%weight2)
50 fname = trim(adjustl(filepath))//"/bias2_flat.csv"
51 call read_matrix(fname, HIDDEN_SIZE_2, 1, nn_tab%bias2)
52
53 fname = trim(adjustl(filepath))//"/weight4_flat.csv"
54 call read_matrix(fname, OUTPUT_SIZE, HIDDEN_SIZE_2, nn_tab%weight4)
55 fname = trim(adjustl(filepath))//"/bias4_flat.csv"
56 call read_matrix(fname, OUTPUT_SIZE, 1, nn_tab%bias4)
57
58 end subroutine grhd_phys_neuralnet_init
59
60 subroutine read_matrix(fname, nrows, ncols, matrix)
61 !> Subroutine which reads the values from a CSV, loads them into a

matrix, and stores them into the NN type
62 implicit none
63
64 ! Declare the variables
65 character(len=256), intent(in) :: fname
66 integer, intent(in) :: nrows, ncols
67 double precision, dimension(:, :), allocatable, intent(out) :: matrix
68
69 ! Local variables for processing CSV files
70 integer :: iflag, nlines
71 integer :: i, j
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72 double precision, dimension(nrows*ncols) :: values
73 ! To reshape in the correct shape after reading flattened arrays:
74 integer, dimension (1:2) :: order2 = (/ 2, 1 /)
75
76 ! Allocate memory for matrix
77 allocate(matrix(nrows, ncols))
78
79 ! Open the file for reading
80 open(unit=666, file=fname, status=’old’)
81 do i = 1, nrows*ncols
82 read(666,*,iostat=iflag) values(i)
83 if (iflag/=0) exit
84 end do
85 ! Reading is over, close the file
86 close(unit = 666)
87
88 matrix = reshape(values, (/ nrows, ncols /), order=order2)
89
90 end subroutine read_matrix
91
92 subroutine nn_predict(D, S, tau, p)
93 !> Make a prediction with the NN: Given the conserved variables D, S,

tau, returns the pressure p as computed by the neural network
94 implicit none
95
96 !> Input and output of the NN
97 double precision, intent(in) :: D ! Conservative energy density
98 double precision, intent(in) :: S ! Conservative momentum density
99 double precision, intent(in) :: tau ! Conservative energy density

relative to D
100 double precision, intent(out) :: p ! Pressure
101 double precision, dimension(3) :: x ! Input for the neural net as a

vector (D, S, tau)
102 integer :: i, j
103
104 x(1) = D
105 x(2) = S
106 x(3) = tau
107 !> Call to make the computations:
108 call nn_compute(x, p, nn_tab)
109
110 end subroutine nn_predict
111
112 subroutine relu(x, relu_values)
113 !> ReLU activation function
114 implicit none
115
116 double precision, dimension(:), intent(in) :: x
117 double precision, intent(out) :: relu_values(size(x))
118
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119 relu_values = max(0.0d0, x)
120
121 end subroutine relu
122
123 subroutine sigmoid(x, sigmoid_values)
124 !> Sigmoid activation function
125 implicit none
126
127 integer, dimension(1) :: s ! Shape of the input array x
128 integer :: i
129 double precision, dimension(:), intent(in) :: x
130 double precision, dimension(:), intent(out) :: sigmoid_values(size(x))
131
132 ! Get shape of array
133 s = shape(x)
134
135 ! Fill array with sigmoid values
136 do i = 1, s(1)
137 sigmoid_values(i) = 1.0d0 / (1.0d0 + dexp(-x(i)))
138 end do
139
140 end subroutine sigmoid
141
142 subroutine nn_compute(x, p, nn_tab_in)
143 ! Computations that the NN performs
144 implicit none
145
146 double precision, intent(in) :: x(INPUT_SIZE) ! Input of the NN
147 double precision, intent(out) :: p ! Pressure as return value (scalar)
148 type(nn_table_t), intent(in) :: nn_tab_in ! Neural network parameters
149
150 double precision :: xx(HIDDEN_SIZE_1) ! intermediate result, after first

hidden layer computaiton
151 double precision :: yy(HIDDEN_SIZE_1) ! intermediate result first hidden

layer after activation function
152 double precision :: xxx(HIDDEN_SIZE_2) ! intermediate result, after

first second layer computaiton
153 double precision :: yyy(HIDDEN_SIZE_2) ! intermediate result second

hidden layer after activation function
154 double precision :: y(OUTPUT_SIZE) ! Output NN as array
155
156 ! Do the calculation:
157 xx = matmul(nn_tab_in%weight0, x) + nn_tab_in%bias0(:,1)
158 if (USE_SIGMOID) then
159 call sigmoid(xx, yy)
160 else
161 call relu(xx, yy)
162 end if
163 xxx = matmul(nn_tab_in%weight2, yy) + nn_tab_in%bias2(:,1)
164 if (USE_SIGMOID) then
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165 call sigmoid(xxx, yyy)
166 else
167 call relu(xxx, yyy)
168 end if
169 y = matmul(nn_tab_in%weight4, yyy) + nn_tab_in%bias4(:,1)
170
171 ! Get the end result as a scalar, not an array
172 p = y(1)
173 end subroutine nn_compute
174
175
176 end module mod_grhd_phys_neuralnet
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