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Abstract

We study the canonical partition function of a countably infinite collection of indepen-
dent quantum harmonic oscillators. This partition function appears to be closely related
to a complex function introduced by Richard Dedekind, the Dedekind eta function η. We
show that η exhibits highly symmetric and modular properties that can then be understood
from the much broader context of modular forms. Due to their periodicity, modular forms
admit a Fourier expansion, from which we recover general theorems concerning the asymp-
totic behaviour of their Fourier coefficients. The central result of this paper constitutes the
fact that the Fourier coefficient αn of the partition function, obtained through the foray
into modular forms, is exactly the degeneracy factor or number of states corresponding to a
certain eigenvalue of the energy spectrum. We conclude with a consideration of the applica-
bility of the system of an infinite amount of quantum harmonic oscillators to various other
fields of physics. In particular, the connection to a two dimensional conformal field theory
in the form of bosonic movement on a 2-torus is motivated, and the relation of our results
to the premises and axioms of quantum field theory is made clear.

We doen onderzoek naar de canonische partitiefunctie van een aftelbaar oneindige verza-
meling onafhankelijke harmonische oscillatoren in de context van kwantummechanica. Deze
partitiefunctie blijkt nauw verband te houden met een complexe functie gëıntroduceerd
door Richard Dedekind, de Dedekind eta functie η. We tonen aan dat η sterk symmetrische
en modulaire eigenschappen vertoont, dewelke begrepen kunnen worden vanuit de veel al-
gemenere context van modulaire vormen. Geholpen door hun periodisch karakter kunnen
modulaire vormen ontwikkeld worden in een Fourierreeks, van waaruit we algemene stellin-
gen halen die het asymptotische gedrag van de Fouriercoëfficiënten weergeven. Het centrale
resultaat van deze thesis handelt over het feit dat de Fouriercoëfficiënt αn van de partitiefunc-
tie, verkregen door de studie van modulaire vormen, gelijk is aan de ontaardingsfactor ofwel
het aantal toestanden dat overeenkomt met een bepaalde eigenwaarde uit het energiespec-
trum. We besluiten met een beschouwing van de toepasbaarheid van het systeem van een
oneindig aantal harmonische oscillatoren in andere domeinen van de fysica. In het bijzonder
motiveren we het verband met een tweedimensionale conforme veldentheorie in de vorm
van de beweging van een boson op een 2-torus, en brengen we de verhouding tussen onze
resultaten en de aannames en axioma’s van kwantumveldentheorie aan het licht.
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I INTRODUCTION

I Introduction

The quantum harmonic oscillator lies at the heart of any theory in modern physics, as it forms
the guiding principle in both quantum field theory and string theory. Quantum field theory
is built upon the premise that particles can be treated as excited states of their underlying
fields, of which the behaviour can be studied using raising and lowering operators analogous to
the ladder operators acting on the eigenstates of the quantum harmonic oscillator. As such,
it is only natural that the theory of quantum harmonic oscillators is used extensively in the
study of these field theories. String theory on the other hand assumes particles can be treated
like strings, of which the different vibrational states determine the physical properties that the
particle exhibits. The consideration of these vibrational modes necessitates a profound insight
into the working of the quantum harmonic oscillator, again motivating its distinct applicability
in modern physics.
An additional aspiration of this paper is to demonstrate the influence of mathematics in con-
temporary physics. Theoretical physics is a study of nature in its most fundamental appear-
ance, which is done by implementing a mathematically advanced and rigorous framework. To
understand various phenomena in physics, we desire a well established connection between
mathematics and the structure of nature, of which the theory in this paper aspires to be an
illustration.

We consider the particular system of a countably infinite amount of independent quantum
harmonic oscillators, and try to distill concrete results concerning physical behaviour through
study of its canonical partition function Z. On grounds of results stemming from statistical
mechanics, it is clear that much of the physics of this system is contained in its partition function.
Progress in the study of this function can be made by recognizing the fact that the obtained
expression for Z resembles another function, up to a complex substitution: the Dedekind eta
function η, introduced by Richard Dedekind in 1877. As this mathematical object has already
been studied to an extensive degree in a variety of contexts throughout its history, the aim of
this paper is to examine this function and recover important theorems about it. These theorems
in turn unveil crucial properties of Z and the system we are considering.
Concretely, upon investigation of certain symmetries that the Dedekind function exhibits, we
find that it can be placed in the more general context of modular forms, of which we set out
to provide a self-contained theoretical description. The symmetries apparent in modular forms
encompass periodicity, and as such allow for a general method of Fourier expanding them.
The Fourier coefficients d(n) of η contain a lot of physical information about the system of
quantum harmonic oscillators, since they can be considered as representations of the number of
microstates corresponding to an energy En, and an expression for the entropy S can be derived.
We in particular look for results on the asymptotics of these coefficients, as the consequential
asymptotic behaviour of the entropy can then be compared to the entropy of other physical
systems in the literature.
We conclude by providing different ways of extending this foray into the theory of quantum
harmonic oscillators, the Dedekind function and modular forms to different domains of physics
and mathematics. In particular, we motivate an understanding of the investigated concepts
in the context of quantum field theory, conformal field theory, and the generalised theory of
modular forms. This paper does not aim to provide a full theoretical description of these
connections, as they merely serve as an incentive for the reader to probe further into the matter.
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II THE QUANTUM HARMONIC OSCILLATOR

II The quantum harmonic oscillator

The physical system of a single, one-dimensional, linear quantum harmonic oscillator is described
by a Hamiltonian operator

H =
p̂2

2m
+

1

2
mω2x̂2 , (II.1)

where ω = (k/m)1/2 denotes the angular frequency of the harmonic oscillator. In the light of
our present discussion regarding the canonical partition function of an infinite amount of such
harmonic oscillators, we first need to look for the eigenvalues of this Hamiltonian. After this
we construct the partition function of a single harmonic oscillator.

II A. Eigenvalues of the quantum harmonic oscillator

The eigenvalues of the operator (II.1) can be determined by way of the ladder operator method
proposed by Dirac, which makes no reference to any particular position or momentum repre-
sentation of the eigenstates. To this end, the so-called ladder operators are introduced:

a =
1√
2

[(mω
~

)1/2
x̂+ i

p̂

(m~ω)1/2

]

a† =
1√
2

[(mω
~

)1/2
x̂− i p̂

(m~ω)1/2

]
.

(II.2)

Upon declaring N = a†a, where N is conveniently called the number operator, it can be shown
that the Hamiltonian becomes

H =

(
N +

1

2

)
~ω . (II.3)

Together with the commutation relation
[
a, a†

]
= 1, Dirac determined the eigenvalues to be

En =

(
n+

1

2

)
~ω , (II.4)

for n ∈ N ∪ {0}. A complete description and proof of Dirac’s method, adopted from [1], is
provided in appendix A.

II B. The partition function of a single quantum harmonic oscillator

Using the expression for the energy eigenvalues in (II.4), we can compute the canonical partition
function

Z = Tr
(
e−H/kBT

)
, (II.5)

for a system of a single quantum harmonic oscillator in contact with a thermal bath at tem-
perature T . Since the trace of a matrix is independent of choice of basis, and since the set of
eigenstates {|Ψn〉} corresponding to the eigenvalues En of the Hamiltonian operator comprises
a complete set of eigenfunctions, this partition function is readily calculated to be

Z =

+∞∑
n=0

〈Ψn| e−βH |Ψn〉

= e−
1
2
β~ω

+∞∑
n=0

(
e−β~ω

)n
,

(II.6)
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III THE DEDEKIND ETA FUNCTION

where we have written β = 1
kBT

. This latter expression consists of a geometric series, which can

be written in a closed form provided that
∣∣e−β~ω∣∣ < 1. As β~ω > 0 is always true and |e−x| < 1

for x > 0, this condition is at once fulfilled for every temperature T of the thermal bath. We
finally get

Z =
e−

1
2
β~ω

1− e−β~ω . (II.7)

The numerator in this equation being equal to e−
1
2
β~ω conveniently reflects the fact that the

zero-point energy of the quantum harmonic oscillator is equal to 1
2~ω instead of zero, so that

even in its ground state the oscillator admits some energy. This constitutes a stark contrast to
the situation in classical mechanics, for which the harmonic oscillator attains its lowest energy
at E = 0. Lastly, we remark that it is the expression for the canonical partition function in
(II.7) that will prove vital in our study of a system of an infinite amount of quantum harmonic
oscillators.

III The Dedekind eta function

We now turn our attention to the system of an infinite amount of quantum harmonic oscillators.
More precisely, the object of study is a countably infinite collection of independent quantum
harmonic oscillators, each of which is characterized by a frequency ωk = k

~ , for k ∈ N. Making
use of the factorisation property of the canonical partition function for independent particles

Z =
+∞∏
k=1

Zk , (III.1)

we will show that the resulting expression for Z can be related to a complex-valued function in-
troduced by Richard Dedekind in 1877, the Dedekind eta function η. We then proceed to study
particular transformation formulae of this function, and try to understand these distinct trans-
formations as well as their effect on η in the much broader context of Möbius transformations
of the upper half of the complex plane.

III A. Getting to the Dedekind eta function

With the characterization of the frequencies of the different harmonic oscillators introduced
above, we note that the partition function for a quantum harmonic oscillator with such a
frequency ωk = k

~ for k ∈ N yields

Zk(β) =
e−

1
2
βk

1− e−βk . (III.2)

If we substitute this expression into (III.1) and bring out the numerator, we get

Z(β) = e
− 1

2
β

+∞∑
k=1

k
+∞∏
k=1

1

1− e−βk . (III.3)

On part of the well-known equality
∑+∞

k=1 k = −1
12 , a result that stems from the theory of analytic

continuation of the Riemann zeta function and that we prove and make sensical in the appendix,
we find

Z(β) = e
β
24

+∞∏
k=1

1

1− e−βk . (III.4)
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III THE DEDEKIND ETA FUNCTION

Having arrived at this point in the computation of the partition function, it is a good idea
to elaborate a bit on the seemingly arbitrary complex substitution that will follow in order to
make the connection between Z and the Dedekind eta function η. Up until now, Z has been
a real function of a real variable, β, which corresponds to the fact that the temperature T
is indeed a real quantity. The Dedekind eta function, however, is a complex-valued function
defined on (part of) the complex plane. So as to be able to recover important results concerning
this function η, a substitution on β to complex variables has to be made. Nonetheless, in the
end only the real variables of β are of importance to describe the true physical nature of the
system we are considering, reflecting the fact that the mere real values of the temperature
T are of interest. As such, the situation is analogous to the widely used complexification of
real sine waves to complex functions of the form eikx. This complexification allows for ease of
computation and for the recovery of important results from complex analysis, but in the end it
is necessary to take the real part of the resulting complex function in order to obtain meaningful
physical results about the wave.

Concretely, we perform a substitution of the following form: write β = −2πiτ , with τ a priori a
complex number. Recalling the fact that each Zk can be written in the closed form expression
of the geometric series under the condition that

∣∣e−βk∣∣ < 1 in the case of a single quantum
harmonic oscillator, we can now construct a similar restriction on τ . Concretely, substituting β
for −2πiτ in the latter inequality yields the restriction that e−2πkIm(τ) < 1. Since every k ∈ N
is strictly positive, this inequality boils down to the constraint that Im(τ) > 0, i.e. that τ ∈ H,
where

H = {τ ∈ C | Im (τ) > 0} (III.5)

is the complex upper half-plane. The resulting partition function is then

Z(τ) = e−
2πiτ
24

+∞∏
k=1

1

1− e2πiτk , (III.6)

for τ ∈ H. This is precisely the inverse of the Dedekind eta function η, which is defined as

η : H→ C : τ 7→ η(τ) = e
2πiτ
24

+∞∏
k=1

(
1− e2πiτk

)
. (III.7)

We thus obtain the fundamental relation

Z(τ) =
1

η (τ)
(III.8)

for every τ ∈ H. We conclude this paragraph by rewriting the Dedekind eta function in a more
workable form: define q = e2πiτ and D1 = {q ∈ C | |q| < 1}, then (III.7) becomes

η : D1 → C : q 7→ η(q) = q
1
24

+∞∏
k=1

(
1− qk

)
. (III.9)

The substitution of τ for q in the definition of the Dedekind function constitutes a map from H
to D1, i.e. a map from the complex upper half-plane to the open unit disk.

III B. Transformation formulae for the Dedekind function

It turns out that the Dedekind eta function satisfies two fundamental functional equations. This
statement is precisely the subject of the following theorem:

6



III THE DEDEKIND ETA FUNCTION

Theorem III.1. For every τ ∈ H, the following equalities hold:

(1) η(τ + 1) = e
πi
12 η(τ)

(2) η

(
−1

τ

)
=
√
−iτη(τ) .

(III.10)

Proof. (1) The first property is readily verified from the definition of the Dedekind function.
We directly calculate η(τ + 1) to be

η(τ + 1) = e
2πi(τ+1)

24

+∞∏
k=1

(1− e2πi(τ+1)k)

= e
πi
12 · e 2πiτ

24

+∞∏
k=1

(1− e2πik · e2πiτk) .

Since e2πik = 1 for every k ∈ Z, we get that

η(τ + 1) = e
πi
12 η(τ) .

(2) The proof of the second property is of somewhat greater complexity. We make use of the
pentagonal number theorem and the Poisson summation formula, for completeness reformulated
here.

The pentagonal number theorem states that the equality

+∞∏
n=1

(1− xn) =

+∞∑
−∞

(−1)k xk(3k−1)/2 (III.11)

holds for |x| < 1 in the context of convergent power series.

The Poisson summation formula establishes a relation between certain values of an appropriate
function f and corresponding values of the Fourier transform of the same function. Concretely,
we have the equality ∑

n∈Z
f(n) =

∑
k∈Z

f̂(k) , (III.12)

where f̂ denotes the Fourier transform of f .

We can now proceed with the proof of (2). A change of variables r = e−
2πi
τ in (III.7) for

evaluation of η in −1τ yields

η(−1/τ) = r
1
24

+∞∏
k=1

(1− rk) . (III.13)

Apply the pentagonal number theorem to the right hand side of this expression:

η(−1/τ) = r
1
24

∑
k∈Z

(−1)kr(3k
2−k)/2 . (III.14)

This equality is justified by virtue of the fact that |r| < 1 for r = e−
2πi
τ and τ ∈ H. Define the

function f to be

f : R→ R : x 7→ exp

[
πi

(
− 1

12τ
+ x− (3x2 − x)

τ

)]
, (III.15)
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III THE DEDEKIND ETA FUNCTION

such that from equation (III.14) we find η(−1/τ) =
∑

n∈Z f(n). To apply Poisson’s summation
formula to this function, we have to compute the Fourier transform of f . Direct calculation of
the Fourier transform from its definition yields

f̂(k) =

+∞∫
−∞

dx exp

[
πi

(
− 1

12τ
+ x− 2kx− (3x2 − x)

τ

)]
. (III.16)

This is a Gaussian integral of the form

+∞∫
−∞

dx exp
(
−ax2 + bx+ c

)
=

√
π

a
exp

(
b2

4a
+ c

)
, (III.17)

the result of which is only valid provided that Re(a) > 0. This translates to the condition that
Re
(
3πi
τ

)
= Im(−3π

τ ) > 0, which is at once satisfied because of the restriction that Im(τ) > 0.
In this particular case we have a = 3πi

τ , b = πi
(
1
τ + 1− 2k

)
and c = −πi

12τ . Substituting these
values of a, b and c into (III.17), we find

f̂(k) =

√
−iτ

3
exp

[
πi

(
τ(2k − 1)2

12
− (2k − 1)

6

)]
. (III.18)

We are now able to apply Poisson resummation to this latter expression for f̂ . Doing so results
in

η

(
−1

τ

)
=

√
−iτ

3

∑
k∈Z

exp

[
πi

(
τ(2k − 1)2

12
− (2k − 1)

6

)]
. (III.19)

We now turn our attention to the right hand side of the transformation formula (2). Applying
the pentagonal number theorem to η(τ) yields

η(τ) = q
1
24

∑
k∈Z

(−1)kq(3k
2−k)/2 =

∑
n∈Z

exp

[
πi

(
τ(6n− 1)2

12
+ n

)]
. (III.20)

The equality formulated in (2) is established by splitting the sum in (III.19) into three sums
over k = 3l, k = 3l + 1 and k = 3l + 2 for l ∈ Z:

η

(
−1

τ

)
=

√
− iτ

3

∑
l∈Z

(
exp

[
πi

(
τ(6l − 1)2

12
− 6l − 1

6

)]
+ exp

[
πi

(
τ(6l + 1)2

12
− 6l + 1

6

)]
+ exp

[
πi

(
τ(6l + 3)2

12
− 6l + 3

6

)])
.

(III.21)

In the first sum, bring out a factor exp(πi/6). In the second sum, apply the transformation
l → −l and bring out a factor exp(−πi/6). The two sums that remain are identical, and the
factor in front of their combined sum is exp(πi/6) + exp(−πi/6) = 2 cos(π/6) =

√
3. These

operations result in (III.21) being equal to

η

(
−1

τ

)
=
√
−iτ

∑
l∈Z

(
exp

[
πi

(
τ(6l − 1)2

12
+ l

)]
+

1√
3

exp

[
πi

(
τ(6l + 3)2

12
− (6l + 3)

6

)])
.

(III.22)
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III THE DEDEKIND ETA FUNCTION

We remark that the transformation formula is obtained if the second part of the sum in the
latter expression vanishes. To this end, we rewrite this part as a sum over odd integers:∑

l∈Z

1√
3

exp

[
πi

(
τ(6l + 3)2

12
− (6l + 3)

6

)]
=

∑
m∈2Z+1

1√
3

exp

[
πi

(
3τm2

4
− m

2

)]
. (III.23)

This last expression can be separated into a sum over positive and negative integers:∑
m∈2Z+1
m>0

1√
3

exp

[
πi

(
3τm2

4

)](
eπim/2 + e−πim/2

)
. (III.24)

However, eπim/2 + e−πim/2 = 2 cos
(
mπ
2

)
and this function attains zero at all m ∈ 2Z + 1.

Therefore the entire sum in (III.23) vanishes, so that the second transformation formula is
found by combining (III.20) with (III.22).

The transformations covered in the above theorem, namely τ → τ+1 and τ → −1
τ , are particular

elements of a much broader class of transformations, the Möbius transformations. The theory
of Möbius transformations is discussed in the following paragraph, together with some principal
concepts concerning their nature.

III C. Möbius transformations of the complex upper half-plane

A key concept in the building of Möbius transformations is SL2(Z), the group of (2×2)-matrices
with integer entries and determinant equal to unity. The fact that SL2(Z) indeed forms a group
under matrix multiplication, is proven in the following proposition:

Lemma III.1. Define SL2(Z) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, det

(
a b
c d

)
= 1

}
. Then SL2(Z) is a

group for the operation of matrix multiplication.

Proof. Since det(AB) = det(A) · det(B) is true for any pair of (n × n)-matrices A and B, the
product matrix of two matrices having determinant equal to unity has determinant equal to
unity as well. Together with the fact that the product of two matrices with integer entries is
again a matrix with integer entries, we find that SL2(Z) is closed under matrix multiplication.
Seen as this operation is associative for all matrices, it is associative for SL2(Z) in particular.

The identity element of SL2(Z) is the identity matrix I =

(
1 0
0 1

)
∈ SL2(Z).

The inverse element of a (2× 2)-matrix

A =

(
a b
c d

)
for matrix multiplication is given by

A−1 = det(A)−1
(
d −b
−c a

)
.

If det(A) = ad − bc = 1, then A−1 has determinant equal to unity as well. It follows that if
A ∈ SL2(Z), then A−1 ∈ SL2(Z).

9



III THE DEDEKIND ETA FUNCTION

The above result allows us to present a precise definition for the Möbius transformations through
the following group action of SL2(Z) on H:

SL2(Z)×H→ H :

(
γ =

(
a b
c d

)
, τ

)
7→ γ · τ =

aτ + b

cτ + d
. (III.25)

In other words, the group SL2(Z) acts on the complex upper half-plane via Möbius transforma-
tions. The dot is often omitted so that γτ is written for γ · τ . We have yet to verify that this
action is well defined by showing H is stable under the action of SL2(Z), i.e. γτ ∈ H for every
τ ∈ H. This is the subject of the following lemma:

Lemma III.2. If γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H, then

Im(γτ) =
Im(τ)

|cτ + d|2 . (III.26)

Proof. Direct computation of the imaginary part of γτ gives:

Im(γτ) = Im

(
aτ + b

cτ + d

)
=

1

|cτ + d|2 (ad− bc)Im(τ) .

Since γ ∈ SL2(Z) and so ad− bc = 1, we find the desired result.

This lemma implies that if Im(τ) > 0, as is the case for τ ∈ H, then Im(γτ) > 0, so that also
γτ ∈ H. The action of SL2(Z) on H is as such well defined.

Two elements of SL2(Z) are of particular interest:

T :=

(
1 1
0 1

)
S :=

(
0 −1
1 0

)
.

(III.27)

These transformations are referred to as the translation and (modular) inversion respectively.
It can easily be shown that

Tn =

(
1 n
0 1

)
. (III.28)

The reason why these particular transformations are of great interest is because they generate
SL2(Z), as is the subject of the following theorem. The proof will not be stated here, but can
be found in [9].

Theorem III.2. The matrices T and S are the generators of SL2(Z). This means that any
matrix γ from SL2(Z) can be written as a combination of products of these two matrices.

The fact that S and T are the generators of SL2(Z) has profound implications on the Dedekind
function η. After all, a natural question to ask is how the Dedekind function behaves under a
general Möbius transformation of the complex upper half-plane. This topic is elaborated on in
the following paragraph.

10



III THE DEDEKIND ETA FUNCTION

III D. A central result concerning Möbius transformations and η

We now motivate our study of the general theory of Möbius transformations by explicating
the effect of such a transformation to η. As will become clear, η exhibits some interesting
symmetries with regard to these transformations.

Using the notation introduced in (III.27), the transformation formulae (III.10) of η become

η(Tτ) = e
iπ
12 η(τ)

η(Sτ) = (−iτ)
1
2 η(τ)

(III.29)

If we let cS = 1 and dS = 0, respectively cT = 0 and dT = 1, denote the c- and d-entries of
S, respectively T , then we can derive the following equalities that are needed to reformulate
(III.29):

(−iτ)
1
2 = e

3iπ
4 (cSτ + dS)

1
2

1 = (cT τ + dT )
1
2 .

(III.30)

Combining (III.29) with the newly obtained equalities, we get that

η(Tτ) = e
iπ
12 (cτ + d)

1
2 η(τ)

η(Sτ) = e
3iπ
4 (cτ + d)

1
2 η(τ) ,

(III.31)

where we have dropped the subscripts of c and d as it is clear they refer to the entries of
the transformation of τ on the left hand side. If we ignore the phase factors in front of the
expressions on the right hand side, we see that η exhibits a special symmetry with respect to T
and S. This symmetry becomes exact if we get rid of those phase factors. The way to do this
is by raising the obtained expressions to a power of 24, as this is the smallest number making
each of the phase factors equal to one. The result of this operation is

η24(Tτ) = (cτ + d)12η24(τ)

η24(Sτ) = (cτ + d)12η24(τ) .
(III.32)

We now invoke the result of the preceding subsection that S and T are generators of SL2(Z).
The fact that any γ ∈ SL2(Z) can be written as a string of products of S and T means that the
symmetry exhibited by η24 with respect to S and T can be generalized to a symmetry of η24

with respect to any Möbius transformation γ. We obtain the central result of this section:

η24
(
aτ + b

cτ + d

)
= (cτ + d)12η24(τ) , (III.33)

for every γ =

(
a b
c d

)
∈ SL2(Z). The function η24 is often denoted by ∆ and is called the

modular discriminant function.

The fact that ∆ displays these symmetries is of paramount importance for the continuation of
our study into the behaviour of Z, as these symmetries have been widely studied in the context
of a more general group of functions with the same property as ∆ and that bear the name of
modular forms. The rest of this paper is now concerned with the study of properties of modular
forms and how they translate to features of ∆, and as such to features of Z.

11
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IV The general theory of modular forms

In the last section we concluded that the modular discriminant function exhibits symmetry
properties under the action of Möbius transformations. We now study these properties as
particular examples of modular symmetry by introducing the general definition of modular
forms, followed by a discussion of a few important results concerning these highly symmetric
functions. We bring forward their periodic character and hereby study their Fourier series. The
Fourier coefficients of the partition function Z we have been considering up until now and for
which we have established a connection to modularity, will turn out to contain information
about the physics of the system. In the light of the interest in the limiting behaviour of our
system, it is also worthwile to investigate the growth of the Fourier coefficients.

IV A. Basic definitions and examples

We introduce a definition of modular forms, which is directly related to our foray at the end of
the previous section into the general transformation formula for ∆ = η24:

Definition IV.1. A function f : H → C is called a modular form of weight k ∈ Z for SL2(Z)
if and only if f satisfies the functional equation:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) , (IV.1)

for all γ =

(
a b
c d

)
∈ SL2(Z).

Upon recalling the transformation formula (III.33) for the modular discriminant function, we
conclude from the above definition that ∆ is a modular form of weight 12.

The purpose of our study of modular forms is to obtain results from which we are able to deduce
implications to the physics of our system. With this goal in mind, the study of modular forms
appears to be a futile enterprise in the investigation of Z, as Z is related to η and η itself does
not conform to the definition of a modular form for two reasons: its weight would be 1

2 , which
is not integral, and it allows for extra phase factors, as can be seen in (III.31).

However, η satisfies a more general definition by virtue of which it can be of half integral weight
and can allow for phase factors. The theorems that are relevant to our discussion of Z will still
hold for these more general functions, as we will argue when we introduce them. We nonetheless
still adopt definition IV.1 if we wish to talk about modular forms and their properties. The
more general definition for modular forms with the purpose of including η becomes:

Definition IV.2. A function f : H→ C is called a modular form of weight k ∈ Z+ 1
2 or k ∈ Z

with multiplier system ε for SL2(Z) if and only if f satisfies the functional equation

f

(
aτ + b

cτ + d

)
= ε(a, b, c, d)(cτ + d)kf(τ) ,

for all γ =

(
a b
c d

)
∈ SL2(Z) and for which |ε(a, b, c, d)| = 1. If for all a, b, c, d ∈ Z, ε(a, b, c, d) =

1 holds, then the multiplier system is said to be trivial. In this case, f is just called a modular
form of weight k.

12
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With this definition in mind, we can now say that η is a modular form of weight 1
2 with a certain

multiplier system ε yet to be explicated. Because of the result that Z is the reciprocal of the
Dedekind eta function η, it is easy to see from the above definition that Z is also a modular
form, of weight −1

2 , along with a certain multiplier system ε.

In this paper we will not delve deeper into the derivation of the precise form of the multiplier
systems ε. An important remark however is that the multiplier system does not depend on the
argument of the modular form, τ , but only on the parameters of the transformation γ, i.e. a, b, c
and d, and on the function f itself. Furthermore, we remark that multiplier systems, albeit
introduced here in the context of modular forms, can be studied separately. See for instance
[8].

An immediate consequence of definition IV.1 is that there are no non-zero modular forms of
odd weight. Indeed, if f is a modular form of weight k = 2m + 1 for m ∈ Z and we take
γ =

(−1 0
0 −1

)
, then the modularity of f implies that for any τ ∈ H:

f(γτ) = f(τ) = (−1)2m+1f(τ) = −f(τ) , (IV.2)

from which we deduce that f(τ) = 0 for all τ ∈ H.

Another important consequence of the definition of modular forms is the fact that modular
forms admit periodicity. Indeed, let γ = ( 1 1

1 0 ) and f be a modular form of weight k. Then
f(γτ) = f(τ + 1) = f(τ). This implies that modular forms possess a Fourier series:

f(τ) =
∑
n∈Z

αne
2πinτ =

∑
n∈Z

αnq
n . (IV.3)

The Fourier expansion of a modular form is also frequently called the q-series. We will study
properties of the Fourier coefficients of modular forms in more detail in the next section.

IV B. The vector space of modular forms of weight k

In this subsection, we will show that the modular symmetry is preserved under the additive
operation of two modular forms of weight k and under scalar multiplications of modular forms
with complex numbers. This then allows us to study vector spaces of modular forms of weight
k over the field C. Moreover, the structure of the Fourier expansion of modular forms naturally
gives rise to a subdivision of these spaces based on the smallest power of q for which the Fourier
coefficient is not zero.

We now make the argument concerning vector spaces of modular forms of weight k precise. Let
f and g be two modular forms of weight k ∈ Z. A simple calculation shows that the sum f + g
is again a modular form of weight k. After all, for any γ =

(
a b
c d

)
and τ ∈ H:

(f + g)(γτ) = f(γτ) + g(γτ) = (cτ + d)k(f + g)(τ) . (IV.4)

If f is a modular form of weight k and λ ∈ C is a complex number, then λf is again modular
form of weight k, as can readily be seen. In summary, modular forms of weight k form a vector
space over C. We denote this vector space by Mk.

Recall from equation (IV.3) that modular forms admit a Fourier expansion. We now consider
a subdivision in the space of modular forms of weight k based on the nature of their Fourier
coefficients. If the Fourier coefficients αn of a modular form f are zero for n ≤ 0, then f is said
to be a cusp form. It is easily verified that if two modular forms f and g of weight k satisfy

13
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this property, then their sum λf + µg (λ, µ ∈ C) satisfies it as well. Therefore, cusp forms of
weight k comprise a subspace of modular forms of weight k. We denote this subspace by M0

k.
If it is true that αn = 0 for n < 0, but α0 6= 0, then f is said to be a holomorphic modular form
of weight k. The nomenclature “holomorphic” stems from complex analytic considerations of
this function. If for n < 0 there possibly is a Fourier coefficient αn of f that is non-zero, and
the sum in the Fourier expansion is not over the whole set of integers Z, then f is said to be
a weakly holomorphic modular form of weight k. Again, weakly holomorphic modular forms
constitute a vector space over C, which we denote by M!

k. From these definitions it is quite
straightforward to see that the following inclusions hold:

M0
k ⊂Mk ⊂M!

k . (IV.5)

In the light of future assertions that will be made about the dimensions of these vector spaces,
we add the observation that the product of a modular form f of weight k and a modular form
g of weight l is again a modular form, but now of weight k+ l. The product of a modular form
f of weight k and a cusp form g of weight l is a cusp form of weight k + l.

We illustrate the above by displaying the series representation of the modular discriminant
function ∆ = η24. It can be obtained with the help of the pentagonal number theorem. Recall
that

∆(q) = q
+∞∏
k=1

(1− qk)24 . (IV.6)

The pentagonal number theorem then shows that

+∞∏
k=1

(1− xk) =

+∞∑
k=−∞

(−1)kx(3k
2−k)/2 , (IV.7)

i.e. there are no negative powers of q appearing in the series expansion of ∆. Moreover, the
right hand side of (IV.7) has a constant term equal to 1. However, after multiplication with q
in front of this series expansion, we find that ∆ has no non-zero constant term in its q-series.
Therefore, we can conclude that ∆ is a cusp form of weight 12, i.e. ∆ ∈M0

12.

Recall that there are no non-zero modular forms of odd weight. This essentially means that
M2k+1 = {0} for all k ∈ Z. It is a natural question to ask whether the vector space of modular
forms of weight k with k even is finite dimensional, and if so, whether a closed form expression
for the calculation of the dimension exists. A quite remarkable result shows that the answer to
both of these questions is positive. This is precisely the content of the following theorem, of
which the proof can be found in [10].

Theorem IV.1. If k < 0 or if k is odd, then dimC Mk = 0. For k ≥ 0 and k even, we have

dimC Mk =

{
bk/12c+ 1 if k 6≡ 2 mod 12

bk/12c if k ≡ 2 mod 12
,

where bac denotes the integer part of a ∈ R.

An immediate consequence of the above theorem is that there are no non-zero modular forms
of weight 2, since dimCM2 = b2/12c = 0. The dimensions of the vector spacesM4 andM6 are
both equal to one. This means that, up to a complex prefactor, there exists only one modular
form of weight 4 and weight 6 respectively. These modular forms are called the Eisenstein series
of weight 4 and weight 6, which we specify below.

14
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The Eisenstein series of weight k ∈ Z for k ≥ 3 is defined as the function:

Gk : H→ C : τ 7→ Gk(τ) =
∑

(m,n)∈Z2\(0,0)

1

(mτ + n)k
. (IV.8)

The Eisenstein series of weight k is a modular form of weight k. Indeed, take an arbitrary
γ =

(
a b
c d

)
∈ SL2(Z) and any τ ∈ H. We calculate:

Gk(γτ) =
∑

(m,n)∈Z2\(0,0)

(
m
aτ + b

cτ + d
+ n

)−k
= (cτ + d)k

∑
(m,n)∈Z2\(0,0)

((ma+ nc)τ +mb+ nd)−k .

(IV.9)

But if (m,n) runs through all of Z2 \ (0, 0), then also (ma + nc,mb + nd) runs through all of
Z2 \ (0, 0) as well. Therefore we get

Gk(γτ) = (cτ + d)kGk(τ) , (IV.10)

so that the Eisenstein series of weight k is a modular form of weight k. As we already stated,
there are no non-zero modular forms of odd weight, so this most certainly implies that the
Eisenstein series of odd weight vanishes. However, it is a priori not clear if the Eisenstein series
for k ≥ 4 and k even do not vanish, since this would make the definition in (IV.8) meaningless.
Luckily, a proof of the non-vanishing of the Eisenstein series for k ≥ 4 and k even is found in
[7].

By virtue of theorem IV.1, G4 and G6 are the only modular forms of weight 4 and weight 6
respectively, albeit up to a complex factor. We are allowed to normalise these Eisenstein series
in the sense that the constant term in the series expansion of G4 and G6 becomes 1 through
multiplication with a proper complex prefactor. The normalised Eisenstein series of weight k is
denoted by Ek. The first few terms of the series expansions of E4 and E6 are given by (see [7])

E4(τ) = 1 + 240q + 2160q2 + . . .

E6(τ) = 1− 504q − 16632q2 + . . . .
(IV.11)

Note that both Eisenstein series are holomorphic modular forms since both series expansions
start off with a non-zero constant term and do not consist of negative powers of q.

As we have already demonstrated before, the multiplication of modular forms results in a new
modular form of weight equal to the sum of the weights of the original modular forms. Therefore,
we find that E2

4 is a modular form of weight 8. As a result of theorem IV.1, this must be the
only modular form of weight 8, up to a complex factor. The same reasoning shows that E4E6

is the only modular form of weight 10, up to a complex factor. The dimension of M12 is equal
to two, and since E2

6 and E3
4 constitute two linearly independent modular forms of weight 12,

as can be seen from the first few coefficients of their series expansion, any modular form f of
weight 12 can be expanded as:

f = αE3
4 + βE2

6 . (IV.12)

As a particular example of this last assertion, we recall that the modular discriminant function,
∆(τ) = η24(τ), is a modular form of weight 12. Hence we are able to write ∆ in terms of the
Eisenstein series E4 and E6 as displayed in (IV.12). Since we have already proven that ∆ is a
cusp form and therefore has no constant term in its q-series, and since both E4 and E6 do in
fact have a constant term of 1 in their series expansion, we from this deduce that the sum has
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to be of the form ∆ = α(E3
4 − E2

6) in order to get rid of the constant term. By equating the
series expansion of ∆ to this combination of E4 and E6, one finds that (see [7])

∆ =
E3

4 − E2
6

1728
. (IV.13)

This principle can be extended to any vector space of modular forms of a specific weight k.
The general statement of this fact is given in the following theorem, of which Jean-Pierre Serre
provides a proof in [10]:

Theorem IV.2. For k ≥ 4 even, the set

{Ea4Eb6 | a, b ∈ N, 4a+ 6b = k} (IV.14)

forms a basis for the finite dimensional vector space Mk.

This precisely means that for any modular form f of weight k, the first few coefficients of the
q-series of f contain sufficient information to determine the coefficients in the linear combination
of the basis functions Ea4E

b
6 that produces f .

IV C. Asymptotic growth of Fourier coefficients of modular forms

The previous paragraph demonstrated that the Fourier coefficients of modular forms bring
about a natural distinction of spaces of modular forms into cusp, holomorphic and weakly
holomorphic modular forms respectively. However, the implications that are established by these
Fourier coefficients of modular forms to mathematics and physics do not end there. There exist
some well-known open problems in the mathematical field of number theory concerning integer
sequences that comprise the Fourier coefficients of certain modular forms. As an introduction
to this matter, we start off with a brief discussion of these specific mathematical problems.
Moreover, we introduce a general theorem about the asymptotic growth of the considered Fourier
coefficients. The analysis of the Fourier coefficients of Z will prove vital in the gathering of
information concerning the physical aspects of our system.

The Ramanujan τ-function

The Fourier coefficients of the modular discriminant function ∆ are often denoted by τ(n).
The function τ : N → Z : n 7→ τ(n) is called the Ramanujan tau function. Long before it
was recognised that ∆ exhibited modular properties, Ramanujan and contemporaries already
investigated into the nature of the integer sequence τ(n). Many properties of the tau function
were first brought about as conjectures from the hand of Ramanujan, such as the fact that
τ is a multiplicative function, which was later proven by Mordell using techniques from the
theory of modular forms; see for instance [6]. All of these conjectures were centered around the
Ramanujan hypothesis, which was formulated in 1916 by Ramanujan and which states that

|τ(p)| < 2p11/2 , (IV.15)

for p prime. A rigorous proof of this statement was given almost 60 years later by Pierre Deligne.
Derrick Henry Lehmer conjectured that τ(n) 6= 0 for all n, which was at that time known as
Lehmer’s conjecture of the non-vanishing of the Ramanujan tau function. The conjecture was
proven by Will Y. Lee in 2015, see [5].
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The partition of integers

We recall that the partition function for the system of an infinite amount of quantum harmonic
oscillators is given by

Z(q) = η−1(q) = q−
1
24

+∞∏
k=1

1

1− qk . (IV.16)

The infinite product appearing in the left hand side of this expression can be written in a series
expansion:

+∞∏
k=1

1

1− qk =
+∞∑
k=1

p(n)qn . (IV.17)

We are now able to study the coefficients p(n) that appear in the series expansion through
knowledge of the product on the left hand side and vice versa. This method of encoding a
sequence as the coefficients of a series expansion is called the method of the generating function.
It is an extensively studied function in number theory, not in the least because of the following
non-trivial result, which we will not prove here: the coefficients p(n) represent the number of
ways to partition an integer n. A partition of a positive integer n is a way of writing n as a
sum of smaller positive integers. p(n) then counts the number of ways n can be written as such
a sum, for which the order of terms in the summation does not matter and for which zero is
not included in the sum. For example: 3 = 2 + 1 and 3 = 1 + 1 + 1, so p(3) = 2. Hardy and
Ramanujan explicated the asymptotic behaviour of p(n), which is the content of the so-called
Hardy-Ramanujan asymptotic formula:

p(n) ∼ 1

4n
√

3
e
π
√

2
3

√
n
, (IV.18)

for n → +∞. The take-away message concerning this result is the fact that p(n) grows expo-

nentially, in the form ec
√
n with c = π

√
2
3 . The growth of such an exponential is very sensitive

to the specific values of c. To get a feeling for this sensitivity, a plot of the first 50 values of
p(n) along with the asymptotic formula of Hardy-Ramanujan and two other estimates of c in
the same formula is provided in figure 1. The Hardy-Ramanujan estimate uses the value of

cHR := π
√

2
3 ≈ 2, 5651. The asymptotic formula that incorporates the other two estimates of

c exhibits the same exponential behaviour as in (IV.18), but for the values c = cHR − 0, 1 and
c = cHR + 0, 1 respectively. Even for the partition of the first 50 integers and for such a small
difference with the estimate of c obtained by Hardy and Ramanujan, the discrepancy in the
growth is clearly visible.
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Figure 1: The Hardy-Ramanujan asymptotic formula tested for the first 50 values of p(n). The values
of p(n) were obtained from the Online Encyclopedia of Integer Sequences, sequence A000041.

Implementing the expansion in (IV.17) into (IV.16) yields

Z(q) = q−
1
24

+∞∑
n=1

p(n)qn . (IV.19)

We therefore conclude that a study of the partition of integers is of great interest to us if we
wish to understand asymptotical properties of Z.

A central result concerning asymptotics of Fourier coefficients of modular forms

It turns out that the Fourier coefficients of the three different kinds of modular forms, i.e. cusp,
holomorphic and weakly holomorphic, possess different growth properties for large n. This is
the essence of the following theorem, also valid for modular forms with multiplier system ε and
which is proven in [2]:

Theorem IV.3. Let f be a modular form of weight k and let αn denote the n-th Fourier
coefficient of f . We get:

1. If f ∈M0
k, then α(n) ∼ O(nk/2) for n→∞

2. If f ∈Mk, then α(n) ∼ O(nk−1) for n→∞

3. If f ∈M!
k, then α(n) ∼ O(ec

√
n) for n→∞, for which c > 0.

Note that the asymptoticality result of the partition of integers is in agreement with this theo-
rem. Since ∆ is a cusp form of weight 12, we expect that its Fourier coefficients will be limited
by a polynomial growth of the form O(n6) for n going off to infinity, which is in accord with the
result by Ramanujan given in (IV.15). Moreover, Ramanujan’s hypothesis does an even better
job at estimating the asymptotic growth than theorem IV.3.
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V The physics behind the Fourier coefficients of Z

In the previous section we introduced the theory of modular forms and discussed results about
their Fourier coefficients. We now relate these findings to physical results on our system of an
infinite amount of quantum harmonic oscillators.

V A. The number of eigenstates corresponding to the energy eigenvalues

We recall that the partition function of a discrete quantum mechanical system is given by the
definition

Z(β) =
∑
n∈N

d(n)e−βEn , (V.1)

where d(n), the degeneracy factor, denotes the number of eigenstates corresponding to an
energy En. In the particular case of a system of an infinite amount of quantum harmonic
oscillators, we found that Z = η−1. As this is a modular form, the preceding reflections about
its Fourier series representation allow us to relate these Fourier coefficients to the number of
states corresponding to a certain energy value from the discrete energy spectrum. To this end
we recall that we performed changes of variables from β to τ , and from τ to q. Implementing
these changes of variables in (V.1) and upon comparison with the obtained q-series of Z, it
follows that d(n) = αn. In essence, the number of eigenstates corresponding to energy En is
determined by the Fourier coefficient αn.

V B. The entropy and its asymptotic growth

Seen as we were able to find an identification of the Fourier coefficient αn with the number of
eigenstates corresponding to En, the Boltzmann relation then tells us that the entropy of this
system corresponding to energy En is given by Sn = kb logαn. We are particularly interested
in the growth of the entropy as we increase the energy of the system, since we have derived
vital asymptoticality results for αn. As pointed out earlier, the partition function Z consti-
tutes a weakly holomorphic modular form and therefore it follows from theorem IV.3 that the
Fourier coefficients αn experience exponential growth as n goes off to infinity. We can even
get more precise than that: we have already established the result that the sequence of Fourier
coefficients αn is identical to the sequence of partition of integers p(n), as was pointed out in
(IV.19). Therefore, the Hardy-Ramanujan asymptotic formula gives an explicit expression for
this exponential growth of the αn, and thus yields the explicit polynomial growth of the entropy
S:

S ∼ π
√

2

3

√
n , (V.2)

as n goes to infinity. This is a fundamental result that will allow for a transition to conformal
field theory, as we set out to motivate in the outlook of this project.

VI Outlook & Conclusion

VI A. Outlook

The general theory of modular forms covered in this paper along with the results we have
derived for Z, make frequent appearances in various fields of physics. In this paragraph, we
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briefly discuss a few of these applications without delving too deeply into the general theory
behind it, as these topics merely aspire to be a way of displaying the importance of modular
symmetry in several branches of theoretical and mathematical physics.

Quantum field theory

It is a natural question to ask why we are interested in this seemingly pathological system of an
infinite amount of quantum harmonic oscillator, as for the study of regular quantum mechanics
this consideration yields no particularly useful results. An explanation can be found in the
claim that this system serves as a stepping stone to the more general theory of quantum field
theory (QFT).

Quantum field theory no longer deals with classical point particles, but rather describes the
physical reality as being comprised of a field continuum. Useful results concerning the physics
of this continuum can be extracted using raising and lowering operators similar to the creation
and annihilation of the quantum harmonic oscillator. As such, a field continuum necessitates a
description of the behaviour of oscillators in the limiting case for which we consider an infinite
amount of them.

Conformal field theory

A pivotal concept in conformal field theory (CFT) is the study of operators that act on the
complex plane z = x+ iy ∈ C and that are of the form

Ln = −zn+1 ∂

∂z
(VI.1)

for which n is an integer. It is then possible to show that all the symmetrical transformations
on the complex upper half-plane H can be constructed from arithmetical combinations of these
operators. For instance, the operator −1

2(L−1 + L̄−1 = ∂
∂x) represents infinitesimal translations

in the x-direction of the complex plane. Through introduction of the commutation relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (VI.2)

for which δ represents the Kronecker delta, a fundamental algebra can be obtained, named after
Virasoro. Without providing further details we mention that the Virasoro algebra is also called
the algebra of symmetries of a 2D CFT, as it contains translations, rotations, dilatations and
the alleged special conformal boosts. The quantity c in (VI.2) is the central extension or central
charge of the CFT and can be regarded as a way of characterising the particular CFT that is
considered.

It was shown in 1986 by John Cardy that the entropy of a two dimensional CFT is given by
the Cardy formula

S = 2π

√
c

6

(
L0 −

c

24

)
, (VI.3)

where c again represents the central charge of the system, and L0 can be thought of as a
generalisation of the energy. It can be proven that a 2D CFT with central charge equal to
one provides the description of the excited states of a boson moving freely on a 2-torus. If we
substitute this value for c into (VI.3), we find that the entropy described by the Cardy formula
is identical to the entropy of the system of an infinite amount of quantum harmonic oscillators.
In a sense, this suggests that the system of oscillators we have been considering throughout this
paper constitutes an equivalent description of free bosonic movement on a 2-torus.
A possible continuation of the theory in this paper could be the investigation of the transition
from quantum mechanics to conformal field theory. It is certainly possible that other systems

20



A SOLUTION OF THE QUANTUM HARMONIC OSCILLATOR BY THE LADDER
OPERATOR METHOD

in CFT can be described by partition functions that satisfy modular symmetries analogous to
Z, as we have motivated here for the case of the bosonic particle on a 2-torus.

Possible generalisations of modular forms

There are a few possible continuations to the theory we have presented that go deeper into
the mathematics behind modular forms and that generalise this concept. Without providing
further details, some of these generalisations include mock modular forms, theta functions and
Jacobi forms.

As was the case for modular forms, these generalisations appear throughout the whole of the-
oretical physics. For example, the quantum degeneracies of single-centered black holes can be
connected to the Fourier coefficients of mock Jacobi forms, as is covered in [2]. This com-
plements the discussion in this paper, where we concluded that the degeneracy factors of the
energy eigenvalues of the infinite amount of quantum harmonic oscillators are exactly the Fourier
coefficients of the weakly holomorphic modular form 1

η .

VI B. Conclusion

We demonstrated that the partition function of an infinite amount of quantum harmonic oscil-
lators is given by the reciprocal of the Dedekind eta function. We observed that the Dedekind
eta function satisfies highly symmetrical properties, which then led us to the more general study
of modular forms. A reflection on some fundamental and deep results about vector spaces of
modular forms and their Fourier coefficients followed, in order to extract meaningful physical
information about the system we were considering. The central result of this paper is that
the Fourier coefficients of the partition function Z, obtained through the foray into modular
forms, is identical to the degeneracy factor or number of states corresponding to a certain eigen-
value of the energy spectrum. Upon application of the Boltzmann relation, this then led to the
conclusion that the entropy of the system satisfies the asymptotic behaviour as described by
(V.2). We motivated that the study of the concepts does not end on this note: a suggestion
for possible continuations of the theory concerning the physical system and generalisations of
modular forms has been laid bare.

Regarding the aspiration to bring the interesting interplay between mathematics and physics
into light, we wish to add that we were highly dependent on results stemming from number
theory, complex analysis and algebra so as to be able to obtain physical information about our
original system. This confirms the assertion made in the introduction that to fully comprehend
nature in its most fundamental appearances, we need a rigorous mathematical framework to
work in.

Appendices

A Solution of the quantum harmonic oscillator by the ladder
operator method

Consider a 1D quantum harmonic oscillator given by the Hamiltonian

H =
p2

2m
+

1

2
mω2x2 (A.1)
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We introduce new variables, X =
√

mω
2~ x and P =

√
1

2mω~ p. Expressed in these variables, the

Hamiltonian is:
H = ~ω(P 2 +X2) (A.2)

Note that [X,P ] = 1
2 i. The creation and annihilation operators, also called the ladder operators,

are defined as:

a =
1√
2

[(mω
~

)1/2
x+ i

p

(m~ω)1/2

]

a† =
1√
2

[(mω
~

)1/2
x− i p

(m~ω)1/2

] (A.3)

And in terms of the new variables X and P , the ladder operators are:

a = X + iP, a† = X − iP (A.4)

The ladder operators satisfy the commutation relation [a, a†] = 1. In order to show this, we
apply the definition of the ladder operators from (A.4).[

a, a†
]

= aa† − a†a
= −2i[X,P ] = 1

The Hamiltonian can be expressed in yet another form, by introducing a new operator, called
the number operator, N = a†a. Expanded, this operator can be written as

N = a†a = X2 + P 2 − 1

2
1

Therefore, N + 1
21 = X2 + P 2, and by using (A.2), the Hamiltonian can be written as:

H = ~ω
(
N +

1

2

)
(A.5)

The eigenvalues of the Hamiltonian are denoted by |E〉. We claim that whenever H |E〉 = E |E〉,
then Ha† |E〉 = (E + ~ω)a† |E〉 and a similar relation holds when a† is replaced by a, and the
energy value gets lowered by an amount ~ω. This means that if |E〉 is an eigenstate of the
Hamiltonian, then a |E〉 and a† |E〉 are also eigenstates of the Hamiltonian. Note that a† creates
an eigenstate corresponding to a higher energy, while a creates an eigenstate corresponding to
a lower energy. In both cases, the difference between adjacent energy levels is ~ω.

To show this, note that by manipulating the commutator of H with one of the ladder opera-
tors using standard properties of commutators gives the following results: [H, a] = −~ωa and
[H, a†] = ~ωa†. Now note that Ha = [H, a] + aH and similarly Ha† = [H, a†] + a†H. Now we
let these operator act on an eigenstate |E〉:

Ha† |E〉 =
(

[H, a†] + a†H
)
|E〉

= (E + ~ω) a† |E〉

And similarly one finds that Ha |E〉 = (E − ~ω) a |E〉. Let |E0〉 be the state with smallest
energy, called the vacuum state. Then by definition, a |E0〉 = 0. If we apply the operator ~ωa†
to this expression, we get: (

H − ~ω
1

2

)
|E0〉 = 0 ,
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by applying (A.5) in the last line. From this we conclude that H |E0〉 = 1
2~ω |E0〉. This means

that the lowest possible energy for the harmonic oscillator is E0 = ~ω/2: this is the vacuum
energy.

Now we prove by induction that H(a†)n |E0〉 = En(a†)n |E0〉, where En = ~ω(n + 1
2), for

n = 0, 1, 2 . . . . The base step for n = 0 was just proven. Now suppose that H(a†)n−1 |E0〉 =
En−1(a

†)n−1 |E0〉. We will prove the equality for n. Remember that Ha† = [H, a†] + a†H and
[H, a†] = ~ωa†, meaning that Ha† = ~ωa† + a†H.

H(a†)n |E0〉 = Ha†
(

(a†)n−1 |E0〉
)

= ~ωa†(a†)n−1 |E0〉+ a†H(a†)n−1 |E0〉

= ~ω(a†)n |E0〉+ ~ω
(
n− 1

2

)
(a†)n |E0〉 = ~ω

(
n+

1

2

)
(a†)n |E0〉

So the claim is true. Moreover, if the eigenstate |En〉 is normalised to unity, then |En+1〉 =
a† |En〉 /(n+ 1)1/2 is normalised as well:

〈En+1|En+1〉 =
1

n+ 1
〈En|aa†|En〉

Now use the relation 1 = aa† − a†a, so that aa† = 1 + a†a = 1 +N , hence:

〈En+1|En+1〉 =
1

n+ 1

(
1 +

〈
En

∣∣∣∣ 1

~ω
H − 1

2

∣∣∣∣En〉) = 1 (A.6)

So the claim is proven. Similarly, one can show that |En−1〉 = n−1/2a |En〉 is normalised as well.

To conclude, if we normalise the vacuum state |E0〉, we can construct all normalised eigen-
states corresponding to higher energy values by simply using the raiser operator on |E0〉. The
eigenvalues, the energy values of a single quantum harmonic oscillator, are then given by (II.4):
En = ~ω

(
n+ 1

2

)
. Important to point out is the fact that the ground state E0 has a non-zero

energy value. When developing the partition function for a system of an infinite amount of quan-
tum harmonic oscillators, this will prove to be vital for obtaining the Dedekind eta function.
Later on, this will have consequences for the asymptotic behaviour of the Fourier coefficients
and therefore of the system itself. See Sections IV and V.

B Analytic continuation of the Riemann zeta function

The remarkable result that the sum over all positive integers yields − 1
12 arises as a consequence

of the use of certain techniques in complex analysis to extend the domain of a function to values
for which it is not defined. More precisely, we say that the above result emerges from the
technique of analytic continuation of the Riemann zeta function to parts of the domain where
it is a priori not convergent. The Riemann zeta function ζR is a function of a complex variable
s that takes on the values

ζR(s) =

+∞∑
n=1

1

ns
. (B.1)

If the real part of s is greater than 1, then the series in (B.1) converges and the function ζR
gets assigned the classical values of these series. For other values of s, it is not immediately
clear if meaningful values can be assigned to ζR, as the series could diverge classically. A way
of assigning these meaningful values of ζR to this part of the domain is by way of analytic
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continuation of ζR. This means that we extend the domain of the function so as to keep ζR
analytic on the entire new complex domain. A common way of doing this is by deriving certain
functional relations that the function in question has to satisfy in order to be analytic on the
extended domain. We will give a proof of why

+∞∑
n=1

n = − 1

12

by showing, using the functional equation for ζR, what the value for s = −1 should be in order
for ζR to be analytic on the extended domain, as this specific value of s yields a result on the
sum over all integers. We will not derive this functional equation however, but rather recover it
from the work of Hardy in [3], who gave an elaborate proof of it using techniques from complex
analysis.

Theorem B.1. If s = −1, then the Riemann zeta function takes on the value −112 , i.e.

ζR(−1) =
+∞∑
n=1

n = − 1

12
(B.2)

Proof. Hardy showed in [3] that the Riemann zeta function satisfies the following functional
equation:

ζR(1− s) = 2(2π)−s cos

(
1

2
sπ

)
Γ(s)ζR(s) . (B.3)

We observe that s = 2 yields the value for ζR(−1). We know Γ(2) = 1 and

ζR(2) =

∞∑
n=1

1

n2
=
π2

6
.

The right hand side then becomes − 1
12 , which proves the result.

It is a natural question to ask whether this result has an actual meaning in a physical context,
as it seems a priori doubtful that a regularization of a seemingly divergent series has physical
nuances. We remark however that, for example, the considered system of an infinite amount of
harmonic oscillators itself exhibits a sort of limiting behaviour, and thus it is only reasonable
that these results need to be invoked in order to assign context to the physics behind it. As
mentioned before, the context in which we are working forms a stepping stone to quantum
field theory, in which a continuum of quantum harmonic oscillators is investigated. So as to
make any progress in this physical setting, it is necessary to adopt these mathematical results.
A further motivation for the applicability of this result is given by its extensive use in string
theory as well as in eigenvalue problems of partial differential equations, see for instance [4].
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