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Gravitational waves

® General relativity is the most accurate theory of
gravity to date.

® “Space-time tells matter how to move, matter tells
space-time how to curve.”
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Gravitational waves

® General relativity is the most accurate theory of
gravity to date.
® “Space-time tells matter how to move, matter tells

space-time how to curve.”

® In 2015, we observed the first gravitational waves
(GW) from a binary black hole system.

® Yesterday, discovered stochastic background.

® Future? Insights into nuclear physics from neutron
stars and supernovae! %
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How do we detect GWs?

Gravitational wave signals are detected using template matching.
Numerical relativity simulations provide large template banks for
matching.
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Supernovae simulations

Every blue curve:

® is a proposed nuclear physics theory,
® influences the GW of a supernova/neutron star,
® has to be simulated!

Mass [Mo)

Radius [km]
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Supernovae simulations

Every blue curve:
® is a proposed nuclear physics theory,
¢ influences the GW of a supernova/neutron star,
® has to be simulated!

Radius [km]

Goal of the thesis

Leverage machine learning to speed up simulations.
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The C2P bottleneck

Simulations need to keep track of two sets of variables:
® conserved variables C: fluid dynamics; numerically evolved

® primitive variables P: GW, source fluxes; not evolved, computed from
C variables.
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The C2P bottleneck

Simulations need to keep track of two sets of variables:
® conserved variables C: fluid dynamics; numerically evolved

® primitive variables P: GW, source fluxes; not evolved, computed from
C variables.

Going from C to P (C2P) is a major bottleneck [1, 2]:
® No closed form — root-finding techniques
e 109 calls per ms
® ~ 40% of total simulation cost
® | oad 300MB of external data

Goal of the thesis (specified)

Optimize the C2P conversion with machine learning.
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Evaluation criteria & methods

Wishlist for numerical methods for simulations [2]:
@ Speed: ideally, reduce cost of methods

® Accuracy: predictions have to be accurate

© Robustness: make sure simulations converge to true solution
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Evaluation criteria & methods

Wishlist for numerical methods for simulations [2]:
@ Speed: ideally, reduce cost of methods

® Accuracy: predictions have to be accurate

© Robustness: make sure simulations converge to true solution

[ ] Simulat|ons use Fortran 21 subroutine nn_compute(x, y, neuralnet)
22 implicit none
23

® Use neural networks for 2 [ ) \ x(INPUT_SIZE)

o ey 25 double precision, intent(out) 33 §
ﬂeXIbI|Ity 26 type(neural_network), intent(in) :: neuralnet

27
28 double precision :: xx(HIDDEN_SIZE_1)
29 double precision :: yy(HIDDEN_SIZE_1)
30 double precision :: xxx(HIDDEN_SIZE_2)
31 double precision :: yyy(HIDDEN_SIZE_2)
32 double precision :: y(OUTPUT_SIZE)
33
34 XX = matmul (neuralnetyweight0, x) + neuralnetybias0(:,1)
35 call sigmoid(xx, yy)
36 xxx = matmul(neuralnetyweight2, yy) + neuralnetbias2(:,1)
37 call sigmoid(xxx, yyy)
38 y_vec = matmul (neuralnetyweight4, yyy) + neuralnetbias4(:,1)
30 v = y_vec(1)

10 end subroutine nn_compute
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Neural network for C2P

1%t (naive) idea: Approximate f : C — P with a neural network.
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Neural network for C2P

1%t (naive) idea: Approximate f : C — P with a neural network.

e Data generated with the analytic f~1: P = C
® MLP with 504, 127 hidden neurons; sigmoid activation functions
® Trained with Adam & adaptable learning rate
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Results of naive approach

@ Speed?
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Results of naive approach

© Speed?

~ 5x slower than existing methods

@ Acecuraey?

Squared difference: ~ 1073, vs. ~ 1078 for existing methods

) Robustness?
Not guaranteed by MLP (e.g., performance outside training domain).
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Results of naive approach

@ Speed?

~ 5x slower than existing methods

@ Accuraey?

Squared difference: ~ 1073, vs. ~ 1078 for existing methods

) Robustness?

Not guaranteed by MLP (e.g., performance outside training domain).

® Qverall, worse performance!

® Robustness most crucial: difficult for ML models, built into existing
methods

® (Can we speed up the existing methods?
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Existing methods: root-finding algorithms

Current methods use root-finding algorithms: find root x* of master
function f by iteratively improving estimates x; (e.g., Newton-Raphson).

f(x) A

Thibeau Wouters June 30, 2023 8/13



Existing methods: root-finding algorithms

Current methods use root-finding algorithms: find root x* of master
function f by iteratively improving estimates x; (e.g., Newton-Raphson).

f(x) A

X1 X2 X3 X

e Slow: evaluating f(x) is costly.
® Accurate: accuracy tolerance as stopping criterion

¢ Robust: well-designed master function (Kastaun et al. [3])
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Hybrid approach

2"d idea: Neural network gives an initial guess, to be refined with
root-finding algorithm.

f(x) A
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Hybrid approach

2"d idea: Neural network gives an initial guess, to be refined with
root-finding algorithm.

f(x) A

® Faster? Amount of iterations, size & accuracy network,...
® Accurate: as accurate as existing method

® Robust: as robust as existing method
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Hybrid approach: proof of concept

Test case: magnetic field B, of Alfvén wave:
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Hybrid approach: proof of concept

Test case: magnetic field B, of Alfvén wave:

1.00
0.751
0.50 1
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Q000
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® MLP with 2 hidden layers, each 20 hidden neurons
® Sigmoid or ReLU activation functions

® Training data: sampled directly from the simulation

Thibeau Wouters June 30, 2023 10/13



Hybrid approach: proof of concept

Faster! Compare time-to-completion (TTC):
¢ Standard: (23.48 + 0.54) seconds
® Hybrid, ReLU activation function: (18.84 4 0.19) seconds
® Speed-up of ~ 25%!
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Hybrid approach: proof of concept

Faster! Compare time-to-completion (TTC):
¢ Standard: (23.48 + 0.54) seconds
® Hybrid, ReLU activation function: (18.84 4 0.19) seconds
® Speed-up of ~ 25%!

What about larger networks? (w: influences accuracy)
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® Extend to realistic simulations with nuclear physics

Thibeau Wouters June 30, 2023 12/13



® Extend to realistic simulations with nuclear physics

® How to switch between nuclear physics theory? Recall the plethora of
proposed theories: 1 curve = 1 dataset
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® Extend to realistic simulations with nuclear physics

® How to switch between nuclear physics theory? Recall the plethora of
proposed theories: 1 curve = 1 dataset

® Enable online training of neural networks
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Conclusion

® Gravitational wave astrophysics needs templates obtained with
accurate simulations. The C2P is a major bottleneck to be tackled

® Existing methods using root-finding algorithms are guaranteed to be
accurate and robust

® Machine learning models, such as neural networks, are not guaranteed
to be robust, which is a major drawback for simulations

® Hybrid approaches, combining machine learning with existing
root-finding methods, can potentially speed up simulations
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