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Gravitational waves

• General relativity is the most accurate theory of
gravity to date.

• “Space-time tells matter how to move, matter tells
space-time how to curve.”

• In 2015, we observed the first gravitational waves
(GW) from a binary black hole system.

• Yesterday, discovered stochastic background.

• Future? Insights into nuclear physics from neutron
stars and supernovae!
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How do we detect GWs?

Gravitational wave signals are detected using template matching.
Numerical relativity simulations provide large template banks for
matching.
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Supernovae simulations

Every blue curve:
• is a proposed nuclear physics theory,
• influences the GW of a supernova/neutron star,
• has to be simulated!

Goal of the thesis

Leverage machine learning to speed up simulations.
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The C2P bottleneck

Simulations need to keep track of two sets of variables:

• conserved variables C: fluid dynamics; numerically evolved

• primitive variables P: GW, source fluxes; not evolved, computed from
C variables.

Going from C to P (C2P) is a major bottleneck [1, 2] :

• No closed form → root-finding techniques

• 109 calls per ms

• ∼ 40% of total simulation cost

• Load 300MB of external data

Goal of the thesis (specified)

Optimize the C2P conversion with machine learning.

Thibeau Wouters June 30, 2023 4 / 13



The C2P bottleneck

Simulations need to keep track of two sets of variables:

• conserved variables C: fluid dynamics; numerically evolved

• primitive variables P: GW, source fluxes; not evolved, computed from
C variables.

Going from C to P (C2P) is a major bottleneck [1, 2] :

• No closed form → root-finding techniques

• 109 calls per ms

• ∼ 40% of total simulation cost

• Load 300MB of external data

Goal of the thesis (specified)

Optimize the C2P conversion with machine learning.

Thibeau Wouters June 30, 2023 4 / 13



The C2P bottleneck

Simulations need to keep track of two sets of variables:

• conserved variables C: fluid dynamics; numerically evolved

• primitive variables P: GW, source fluxes; not evolved, computed from
C variables.

Going from C to P (C2P) is a major bottleneck [1, 2] :

• No closed form → root-finding techniques

• 109 calls per ms

• ∼ 40% of total simulation cost

• Load 300MB of external data

Goal of the thesis (specified)

Optimize the C2P conversion with machine learning.

Thibeau Wouters June 30, 2023 4 / 13



Table of Contents

1 Background and goal

2 Methods

3 Näıve approach and problems

4 Hybrid approach

5 Outlook and conclusion



Evaluation criteria & methods

Wishlist for numerical methods for simulations [2] :

1 Speed: ideally, reduce cost of methods

2 Accuracy: predictions have to be accurate

3 Robustness: make sure simulations converge to true solution

• Simulations use Fortran

• Use neural networks for
flexibility
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Neural network for C2P

1st (näıve) idea: Approximate f : C → P with a neural network.

C P

• Data generated with the analytic f −1 : P → C
• MLP with 504, 127 hidden neurons; sigmoid activation functions

• Trained with Adam & adaptable learning rate
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Results of näıve approach

1 Speed?

2

3

• Overall, worse performance!

• Robustness most crucial: difficult for ML models, built into existing
methods

• Can we speed up the existing methods?

Thibeau Wouters June 30, 2023 7 / 13



Results of näıve approach
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Existing methods: root-finding algorithms

Current methods use root-finding algorithms: find root x⋆ of master
function f by iteratively improving estimates xi (e.g., Newton-Raphson).

f (x)

x1 x2 x3 x⋆

x

• Slow: evaluating f (x) is costly.

• Accurate: accuracy tolerance as stopping criterion

• Robust: well-designed master function (Kastaun et al. [3])
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Hybrid approach

2nd idea: Neural network gives an initial guess, to be refined with
root-finding algorithm.

f (x)

x1 x⋆

x

C ≈ x⋆

• Faster? Amount of iterations, size & accuracy network,...

• Accurate: as accurate as existing method

• Robust: as robust as existing method

Thibeau Wouters June 30, 2023 9 / 13



Hybrid approach

2nd idea: Neural network gives an initial guess, to be refined with
root-finding algorithm.

f (x)

x1 x⋆

x

C ≈ x⋆

• Faster? Amount of iterations, size & accuracy network,...

• Accurate: as accurate as existing method

• Robust: as robust as existing method

Thibeau Wouters June 30, 2023 9 / 13



Hybrid approach: proof of concept

Test case: magnetic field Bz of Alfvén wave:
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• MLP with 2 hidden layers, each 20 hidden neurons

• Sigmoid or ReLU activation functions

• Training data: sampled directly from the simulation
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Hybrid approach: proof of concept

Faster! Compare time-to-completion (TTC):
• Standard: (23.48± 0.54) seconds
• Hybrid, ReLU activation function: (18.84± 0.19) seconds
• Speed-up of ∼ 25%!

What about larger networks? (w : influences accuracy)
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Future work

• Extend to realistic simulations with nuclear physics

• How to switch between nuclear physics theory? Recall the plethora of
proposed theories: 1 curve = 1 dataset

• Enable online training of neural networks
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Conclusion

• Gravitational wave astrophysics needs templates obtained with
accurate simulations. The C2P is a major bottleneck to be tackled

• Existing methods using root-finding algorithms are guaranteed to be
accurate and robust

• Machine learning models, such as neural networks, are not guaranteed
to be robust, which is a major drawback for simulations

• Hybrid approaches, combining machine learning with existing
root-finding methods, can potentially speed up simulations
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