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Abstract

In oscillatory media, regions oscillating faster than their surroundings, as well as
topological defects, can act as sources of waves which end up synchronizing the whole
medium. The former give rise to target patterns, while the latter develop into spiral
patterns. In biological systems, these waves are a crucial way of transmitting informa-
tion efficiently. While target patterns have been studied in detail before, specifically
in the context of biology, our interest in spiral wave phenomena is inspired by recent
observations of such structures in cell cycle oscillations of Xenopus laevis frogs. In
order to understand how wavespeed, and the speed by which these patterns entrain
the whole system, depend on the properties of the underlying limit cycle and details
of the system, we rely on numerical simulations. In this research internship, we take
this approach in order to understand how variations in the system’s parameters affect
these speeds and compare them between target and spiral patterns in two-dimensional
systems, and also investigate the interaction between the two competing structures of
target patterns and spiral waves when present in the same system.
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1 Introduction

Oscillations are present everywhere in Nature, from the orbits of planets and stars on cosmic
scales, to cycles in the divison of cells in biological systems. Organisms rely on travelling
wave phenomena and pattern formation to transmit information across large distances in an
efficient way. Spiral waves and target wave patterns are particular examples of dynamical
pattern formation appearing in complex spatiotemporal systems and have been observed in
physical, chemical and biological contexts, such as the famous Belousov-Zhabotinsky (BZ)
reaction [1–3], the catalytic oxidation of CO on a Pt(110) surface [4], the electrical activity of
cardiac muscles [5], the release of free intracellular calcium Ca2+ in Xenopus laevis oocyte [6]
and cAMP waves during the aggregation phase of Dictyostelium discoideum amoebae [7, 8].

Travelling waves have been observed before by the team of Dynamics in Biological systems
(DiBS)1, who supervised this research internship, in the Xenopus laevis frog’s cell extracts.
Since these waves and patterns play an important role in the coordination of the cell cycle
oscillations, a lot of research has been dedicated to understanding these patterns, their
properties and their origin through mathematical models which can be studied numerically.
In particular, in Refs. [9–12], experiments have inspired numerical work on the modelling of
cell cycle oscillations in one-dimensional systems in order to understand observations from
experiments.

Recently, the DiBS team observed spiral patterns for the first time in their experiments.
The spirals appeared together with target patterns in droplets containing extract, which are
two-dimensional extended spatial systems. A snapshot, showing several spiral and target
waves, is shown in Figure A.12. Motivated by this observation, we would like to model the
formation of target patterns and spirals in two-dimensional systems in order to understand
their properties, such as speeds of the waves spreading out and the speed by which these
patterns entrain the medium, as a function of the model’s parameters and details of the
system. Given the observation that target and spiral patterns can appear simultaneously
in a system, we also study the interaction between these patterns, again as a function of
parameters underlying the model of the oscillations.

The report is organized as follows. In Section 2, we introduce the model used to study the
wave phenomena and highlight important points in our computational algorithms. Section
3 then provides some conclusions drawn from the numerical studies, based on the results
provided in the appendices. Section 4 briefly discusses estimates of wave speeds and periods
as observed in experiments and how they relate to the numerical studies. Finally, an outlook
for future work is provided in Section 5.

1The DiBS is part of the Department of Cellular and Molecular Medicine and is situated at Gasthuisberg,
Leuven. More information about their research can be found on their website.
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2 Methods

In this section, we provide detailed information on how we numerically study pattern for-
mation and properties of target patterns and spiral wave phenomena. First, we introduce
the set of equations used to model the oscillations. Then, we briefly explain the numerical
methods used to compute wave and envelope speeds. Finally, we clarify how we numerically
study the interaction between target patterns and spirals.

2.1 The Fitzhugh-Nagumo equations

Whenever we want to model a complicated, biological system, we necessarily have to make
a compromise between simplicity, ensuring that our analysis is tractable and solvable, and
complexity that is inherently present in the system due to many biochemical interactions.
Here, we employ a system of partial differential equations of two variables u and v which
are capable to capture the main behaviour of target and spiral patterns. For our model,
we take inspiration from earlier work of the DiBS lab on travelling waves in one spatial
dimension [10].

To model the cell cycle oscillations, we make use of FitzHugh-Nagumo (FHN) equations
[13,14] related to the well-known Van der Pol oscillator [15]. The equations are

∂tu = ε−1
(
v − 1

4
du(u2 − b)

)
+Du∇2u ≡ ε−1 (v − f(u)) +Du∇2u (2.1)

∂tv = a− u+Dv∇2v . (2.2)

Due to the different nature of the terms, the above equations are called reaction-diffusion
(RD) equations. The variables u and v represent chemical concentrations or activity, and
both are allowed to diffuse in space. The variable u is said to be an inhibitor, while v is
an activator, due to the signs of terms on the right hand sides. We mostly study wave
phenomena in two dimensions, such that ∇2 = ∂2x + ∂2y .

The reaction part of the above equations has a unique fixed point, the homogeneous
steady state solution (HSS), given by

(uHSS, vHSS) =
(
a, d

4
a(a2 − b)

)
(2.3)

The system is in the oscillatory regime if |a| ≤
√
b/3, while the system can be excitable for

other values of a. Here, however, we will limit ourselves to values of a such that the system
is in the oscillatory regime.

Let us briefly discuss how the various parameters of the above RD equations influence
the dynamics of solutions. The parameter ε is called the timescale separation between the
variables u and v. Essentially, ε determines the shape of the time series of u and v: for
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low values of ε, the oscillations are relaxation-like, while for high values of ε, the oscillations
have sinusoidal waveforms for both variables. An example of this is shown in Figure A.1(c)
and Figure A.1(d). The parameters b and d, on the other hand, determine the shape of the
cubic nullcline2, as indicated in Figure A.1(b). However, a suitable rescaling of the variables
allows us to absorb these parameters in ε and a. Indeed, starting from equations (2.1) and
(2.2) and performing the change of variables

ũ =
2√
b
u, ṽ =

8

b
√
bd
v, t̃ =

4

db
t, x̃ =

2√
db
x, ỹ =

2√
db
y . (2.4)

One can easily show that the system of equations then becomes

∂t̃ũ = ε̃−1
(
ṽ − 1

4
ũ(ũ2 − 4)

)
+Du∇̃2ũ (2.5)

∂t̃ṽ = ã− ũ+Dv∇̃2ṽ , (2.6)

where

ε̃ =
16

(db)2
ε, ã =

2√
b
a . (2.7)

Therefore, we take d = 1 and b = 4 fixed from now on. Finally, the parameter a affects the
vertical nullcline and determines the HSS, as is clear because of equation (2.3) and the plot
of the nullclines. Consequently, it determines the equilibrium point of the oscillations for u
and v, since d and b remain fixed. For this reason, we also call a the asymmetry parameter.
Default parameter values in simulations are a = 0, ε = 0.1, Du = 1 and Dv = 0.1.

The above FHN equations are simulated in a square domain with sides of length L = 200.
The equations are numerically integrated using the forward Euler scheme in Python where the
domain is subdivided into N2 grid points, with N = 200, using no-flux boundary conditions
and for a time T = 1000 with Euler time step dt = 0.01. In case ε is smaller than 0.1, the
space-time discretization is improved, depending on the value of ε, because of sharp ‘jumps’
in the time series which require more care in the numerical calculations. The u and v values
are saved after a certain amount s of Euler steps, such that ∆t ≡ s dt = 0.01, independent
of the discretization.

The choice of the initial condition (IC) depends on which pattern we want to study.
To generate target patterns, we choose a homogeneous IC for both u and v: u0(x, y) = 1,
v0(x, y) = 0. A target pattern emerges if the system contains a pacemaker, which is a region
in space which oscillates faster than its surrounding medium. We denote the period inside the
pacemaker region as Pi, while the period outside the pacemaker region is denoted by Po, with
Pi < Po. In our 2D simulations, the pacemaker region will be a circle of radius R and centre
(L
2
, L
2
). Default values are R = 20, Po = 10 and Pi = 9.5. We also define h ≡ Po − Pi, the

period difference between the pacemaker region and the surrounding medium. Numerically,

2The nullclines are defined as the curves in the (u, v) plane satisfying ∂tu = 0 or ∂tv = 0 in absence of
diffusion. The first equation gives the curve v = f(u), referred to as the cubic nullcline, while the second
equation gives u = a, a vertical line. The intersection of the nullclines is the HSS.
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we can create such a pacemaker region by rescaling dt at each time step with a scale factor
which depends on space to fix the periods to their desired values.3.

To study spirals, on the other hand, we employ an initial condition which contains a
topological defect [16–18], namely

u0(x, y) =
(x− x0)

L
, v0(x, y) =

(y − y0)
L

, (2.8)

which has a phase singularity located at (x0, y0) for a = 0. The location of the spiral tip
depends on the HSS, and hence changes only if we vary a. We take x0 = y0 = L

2
, such that

the topological defect is located at the centre of the system for a = 0. From now on, we will
use x∗ and y∗ to denote the coordinates of the centre of the pattern of interest. For target
patterns, this will always be (x∗, y∗) =

(
L
2
, L
2

)
, the centre of the pacemaker. For spirals, this

will denote the location of the spiral tip. From the u, v data of simulations, we can locate
the spiral tip via code inspired by the framework to detect phase defects from [19].

2.2 Wave speed and envelope speed calculations

Once the FHN equations are numerically integrated as explained above, the solution u(t;x, y),
v(t;x, y) is a target pattern or a spiral, depending on our choice of initial condition: exam-
ples are shown in Figure A.2. We are interested in properties of the pattern and how they
affect the surrounding medium. For this, we follow the principles and ideas of earlier work
from the DiBS lab [10], which are briefly summarized below. We take a slice of the solution
by fixing the y-coordinate and define U ≡ u(t;x, y∗) and V ≡ v(t;x, y∗). U and V can be
visualised by a space-time plot, as given in Figure A.3. From the U (or V ) data, we then
identify the (t, x) coordinates where U (or V ) crosses zero from below. These points are then
grouped together in different profiles, shown in black in Figure A.3. For practical reasons,
we construct profiles starting from x = 0, respectively x = L, if x∗ > L

2
, respectively x∗ < L

2
,

until we reach x = x∗.

These profiles represent waves travelling outwards from the pattern towards the sur-
rounding medium. Its wave speed can be determined as follows. Each profile consists of a
rather flat part around the borders of the system, and a valley reaching all the way until the
centre of the pattern. By choosing a profile and considering its (x, t) coordinates, we can fit
a straight line through a section of the valley-shaped part of the profile. The slope of this
straight line is then the wave speed. From the profiles, we can also construct the envelope of
the wave as follows. For each profile, we define the envelope point to be the transition point
from the valley-shaped section to the flat section of the profile. The envelope is then simply
the set of all envelope points and can be fitted using a function of the form x = D + Ctγ.

3For this, we need to know the period of the solution P in case no time rescaling is performed. This can
be computed easily be ‘turning diffusion off’ (setting Du = Dv = 0) and solving the FHN equations.
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The envelope speed is defined to be the parameter C. However, in most cases, the envelope
does not spread out linearly during an initial transient time period, which means that γ is
significantly different from one, and the parameter C cannot be properly interpreted as a
speed. Therefore, we also perform a linear fit through the second half of the envelope points,
and return the slope Cl as envelope speed, which we will refer to as linear envelope speed.

A relation between the wave and envelope speed was derived analytically and checked
numerically for 1D target patterns in [10]. The relation is

C =
Po − Pc
Po

c , (2.9)

where Pc is the period at the ‘centre’ of the system, i.e. the period at (x∗, y∗). In simulations,
Pc can easily be inferred from the time series u(t;x∗, y∗) or v(t;x∗, y∗). This relation was
also checked for 2D target patterns and spirals.

We are interested in the dependence of the wave-and envelope speeds of target as well
as spiral patterns, as a function of the parameters of the FHN equations. For this, we
perform parameter sweeps, where we vary a single parameter over a certain range, and for
each value perform a simulation as detailed above and ‘measure’ the speeds at the end. This
is a daunting computational task, and therefore, the code is adapted to run on a cluster of
supercomputers.

2.3 Competition between spirals and target patterns

As touched upon earlier, we are interested in the interaction between target patterns and
spirals. For this, we study the ‘competition’ between spirals and target patterns when both
are present at the same time in the system. For this, we again use the cross-gradient IC
given in equations (2.8), but this time, we put the topological defect at (xS, yS) =

(
3L
4
, L
2

)
.

At the same time, we define a circular pacemaker with centre at (xT , yT ) =
(
L
4
, L
2

)
. The

FHN equations are then integrated for a time T = 1000. Afterwards, we try to detect a
phase singularity in the data. If none is detected, or if its location has moved significantly
compared to the initial spiral tip location (xS, yS), then we decide the pacemaker has ‘won’,
i.e. has entrained the entire medium. If the spiral is still present and its tip is still close to
(xS, yS), then we detect if the pacemaker region is still present or not. If so, then we have a
‘draw’ and both the target and the spiral pattern are still present. Otherwise, the spiral has
‘won’ and has taken over the entire system.
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3 Results and discussion

We now discuss important conclusions from our simulations. The results of the simulations
are provided with plots in the appendices. First we discuss the speeds of both patterns in
two dimensions and compare our observations with earlier work focusing on target patterns
in one dimension. Next, we analyse the interaction between target patterns and spirals.

3.1 Speeds of target patterns and spirals

The speeds of target patterns and spirals is studied via parameter sweeps, as described above.
First, we focus on target patterns, and vary R, the radius of the circular pacemaker, and h,
the period difference between the pacemaker region and the surrounding medium. Then, we
study both target patterns and spirals at the same time as we vary a, ε and the diffusion
coefficients.

When increasing the size of the pacemaker (by varying R), the wave speed decreases
and the envelope speed increases as shown in Figure A.4. For very large R, both speeds
asymptote towards a constant. When we increase the period difference h, again the wave
speed decreases and the envelope speed increases: see Figure A.5. However, both do not
seem to asymptote towards a constant. This qualitatively agrees with the simulations in 1D
from [10]4.

When we increase the asymmetry parameter a, the speeds are only weakly influenced as
can be seen in Figure A.6. This again agrees with the results in 1D. The wave speed of spiral
waves is not influenced at all by the variation of a: these wave speeds vary between 2.3606
and 2.3726, and a linear fit through the (a, c) points of spiral waves has a very small slope
of 0.00682 (with a p-value of the fit around 10−6).

When varying the diffusion coefficients, we mimic the approach from [10]: in one sweep
we vary Du and put Dv = Du, in another sweep we vary Du and fix Dv = 0. Here, it is
most interesting to focus on the wave speeds of the patterns. The results, after normalizing
the speeds to their values at Du = 1, are shown in Figure A.7 (a) and (b), along with the
approximation c ≈ √Du. The wave speeds of spirals is in both cases well-approximated by
the
√
Du approximation. The same can be said about wave speeds of target patterns in the

second sweep, where Dv = 0, but not in the first case, where Dv = Du. Here, the behaviour
of the wave speed as a function of Du is different from the 1D case.

In order to compare the wave speeds of target patterns between one and two dimensions,

4In [10], h is defined slightly differently as h = (Po − Pi)/Po, such that our h is ten times larger using
the default value Po = 10. Also note that our choice of ‘default’ parameter values is different from [10], so
we do not expect a quantitative agreement with the reference. Our simulations show that the speeds in 1D
and 2D are the same for the same set of parameter values, if the pacemakers are large and ε is small.
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we performed a parameter sweep over the same Du range for one-dimensional pacemaker-
driven systems and compared the wave speeds and periods at the centre. The result is given
in Figure A.8. The fact that wave speeds of target patterns are larger in 2D can be attributed
to the influence of an increased amount of diffusion on the period of the waves, due to the fact
that we are in two spatial dimensions rather than one. Indeed, the dispersion relation tells
us that waves with a larger temporal period have larger wave speeds [10]. The surrounding
medium has a larger effect on the period in 2D and increases the period, thereby increasing
the speeds. This effect is precisely what causes the deviation from the

√
Du approximation

(shown as a black dashed curve in Figures A.7 and A.8), which is valid for travelling waves
in the medium without inhomogeneities (such as pacemaker regions). Note that in the sweep
with Dv = 0, the influence of diffusion on the period is much smaller compared to the sweep
with Dv = Du. Therefore, in the former sweep, the speeds are closer to the c ≈ √Du

approximation.

Finally, we study the effect of varying the time-scale separation ε on the wave- and
envelope speeds of both wave patterns: the result is given in Figure A.9. Here, target and
spiral waves have quite a different response on increasing ε. Whereas the wave speed of target
patterns decreases, the wave speed of spiral waves increases. The envelope speeds of both
patterns decrease, but the target patterns are more stable against this variation compared
to spirals. An interesting consequence, which we will use again in Section 3.2 below, is that
from ε ≥ 0.15, target patterns have a larger envelope speed than spirals, while for ε ≤ 0.15,
the spirals have a larger envelope speed.

We also compared the approximation of the envelope speed as given in equation (2.9) in
each parameter sweep, and found that the relation still holds in 2D for target patterns as
well as for spirals.

3.2 Competition between spirals and target patterns

As already explained above, we are also interested in the competition between spirals and
target patterns when both are present in the system. We want to know which of the two
patterns survives in the end, and how this depends on the choice of parameters. For this,
we study two cases.

First, we vary parameters specific to the pacemaker: R and h. The results of the simu-
lations are shown in Figure A.10. On the left hand side of this figure, we show the outcome
of the competition between the two patterns for each (R, h) pair, with blue, respectively
yellow, denoting the scenario where only the target, respectively the spiral, was observed
in the end, and gray denoting a draw, i.e. both the target and the spiral were present at
the end. We immediately see that the most important property to decide the outcome of
the competition is the period difference h. Indeed, we identify three horizontal ‘bands’: low
values of h mean the spiral will win, intermediate values result in a draw, while for high h,
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the pacemaker is guaranteed to dominate. The influence of varying R is unimportant except
close to transitions between these various bands.

In a second case, we vary ε and h, such that the variation of one of the parameters also
influences the properties of the spiral. The result is shown in Figure A.11 on the left. We
no longer can identify different horizontal bands, which implies that the variation of ε has
a more complicated influence on the competition. Nevertheless, we can still draw the same
conclusion about the influence of h: a faster pacemaker (i.e., a larger period difference with
the environment) has more chance to survive the interaction with the spiral or win.

After this investigation, we also tried to pin down which property of the patterns is the
deciding factor in the competition. One can expect that the envelope of the patterns is
important, since the interaction occurs away from the sources of the patterns. This idea is
tested in a more quantitative way as follows. We perform parameter sweeps, as described
earlier in Section 2.2, over the same pairs of variables as shown in Figure A.10 and Figure
A.11, with either only a spiral or a target pattern present in the system, and measure the same
set of observables as discussed above. We consider the difference between the envelope speed
of the spiral and the envelope speed of the target CS−CT and group the differences according
to the outcome of the competition for each pair of parameters. Each set of differences in
envelope speed is then visualized via a boxplot, shown in Figure A.10 and Figure A.11 on
the right hand sides. The analysis shows that the difference in envelope speed CS − CT ,
when ignoring outliers, is negative in case the target won in the end, lies around zero in the
case a draw was reported, and is positive in the case that the spiral has entrained the entire
medium. This seems to indicate that the pattern with the highest envelope speed will in the
end dominate the system.

In earlier work, the DiBS lab studied the competition between two pacemakers in one-
dimensional systems [11]. Figure 3(c) in Ref. [11] shows that larger or faster (higher period
difference with the surrounding medium) pacemakers in the end take over the medium.
From our investigations, or from the figures in [10], we see that larger and faster pacemakers
have a higher envelope speed. This agrees with our observation established above that the
envelope speed of patterns seems to be the deciding factor in the competition for entraining
the system.

4 Speed and period estimates from experiments

The main motivation to study the properties of spiral waves in RD systems was the obser-
vation of such spirals in Xenopus laevis extracts: recall Figure A.12. We can now make the
connection between the numerical simulations and the experimental data. Via some elemen-
tary data processing in Python, we are able to extract a few rough estimates of wave speeds
and periods of the target and spiral waves. Wave speeds can be estimated from the distance
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travelled by a wave from the locations of wave fronts between different snapshots of the
experiment and dividing this distance by the separation in time. Periods can be estimated
by obtaining the time series at a specific location and, through Fourier transforms, get an
indication of the frequency of the oscillation.

We find that wave speeds of target patterns and spiral waves are roughly identical to each
other: we estimate the wave speed of target patterns to be around (0.409±0.018)µm/s, while
the wave speed of spirals is around (0.417±0.080)µm/s. The period of the oscillations, on the
other hand, is drastically different. Periods measured in experiments where spiral patterns
are observed, is on the order of 10 to 15 minutes, while earlier experiments, which did
not have spiral waves in the system but only target patterns, were always consistent with
periods on the order of 30 to 40 minutes [12]. The discrepancy is likely due to the fact that
pacemakers, by their very definition, keep the period of oscillations in a specified range (i.e.
between Pi and Po in the notation from Section 2.1), while in the presence of spiral waves,
the period of the oscillations is not restricted. This is also clear from Figure A.7(d), showing
that the period in a system with spiral waves can be much lower compared to a system with
only target patterns.

5 Outlook and conclusion

Science is a rigorous, methodological way of exponentially increasing the number of unan-
swered questions by answering questions. The work related to this internship is no exception.
Here we briefly propose possible topics to be explored in future work, inspired by the results
presented above.

An elementary question, which unfortunately is hard to explore in numerical simulations,
is what exactly triggers the creation of spiral waves in cell cycle oscillations. Our simulations
start from a topological defect, without any prior event possibly causing the creation of such
defects. It seems plausible, from experimental footage, that the merger of droplets of extracts
could provide a disruption in the system which initiates the spiraling motion, but due to
the limited amount of observations, this is hard to test quantitatively. Once the production
mechanism of spirals is understood from a modelling point of view, and we know how to
trigger spiral waves, we can bridge the gap between simulations and actual experiments on
biological systems.

A next step is then to identify which of the parameters of the system, or more concretely
the effect due to their variation on the dynamics, is the most essential in understanding the
observed speeds and periods in the experiments. Recently, the DiBS lab hired a new PhD
student whose first goal is to find out which equations are most fit to model the experiment,
using machine learning. The experimental observation of spiral waves inspired this research
internship. It is hoped that the results from this internship and future work, combined
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with machine learning methods, will be able to inspire future experiments on spiral wave
phenomena in Xenopus laevis cells.

In this work, we studied the interaction between target patterns and spiral waves and
established that envelope speed is an important factor in entraining a system. In future
work, one can check this ‘conjecture’ in other parameter sweeps, or repeat the analysis with
the competition between two pacemakers in 2D (extending the work from [11]) or two spirals,
instead of one target and one spiral.

One can also think about scenarios where pacemaker regions and topological defects come
closer to each other in space, and how this would affect their interaction, with an extreme case
being a spiral tip located inside a pacemaker region. In fact, there is a strong motivation
to study such scenarios in future work. In the experiments, we observed a spiral wave
“turn into” a target pattern after a few oscillations. Considering that we are dealing with
biological systems rather than idealized simulations, we might have to drop the assumption,
implicitly used in this work, that parameters are constant in space and time to recreate this
observation in simulations. Numerical explorations show that through varying a, we can
start a simulation with a spiral and end up with a target pattern. However, this requires us
to make the system excitable, and we would like to find other ways which are more suitable.

Finally, we also repeat the observation, coming from the simulations as well as the exper-
imental data, that periods of oscillations are much lower if spirals are present, which could
be the main reason why it appears in cell divison cycles. This surprising discovery can be
investigated further by studying how the period depends on the set-up of the system (e.g.
multiple spirals or pacemakers).

To conclude, in the research internship, we have looked at the properties of spiral waves
and target patterns in two-dimensional systems by numerical studies of a FitzHugh-Nagumo
model of RD equations. The similarities or differences between how these two patterns
behave under variation of the parameters of the system can provide crucial information
regarding how biological systems rely on either target patterns or spiral waves (or both) to
transmit information within the cytoplasm of a cell. Future work can build on the interaction
and relation between the two patterns, and study in detail how the numerical simulations
are related to experiments performed in the lab, possibly even inspiring future experimental
work in the field.

Understanding how waves, originating from pacemaker regions or topological defects,
travel around in biological systems is of central importance in understanding how life orga-
nizes and coordinates oscillations in basic functions such as divisions in cell cycles. With
evolution as driving force and vast amounts of time, lifeforms were able to construct mecha-
nisms that optimize their functioning. Figuring out the properties of different wave patterns
appearing in Nature is a crucial step towards understanding why evolution curated these dis-
tinct mechanisms to transmit information, eventually adding to our understanding of deeper
questions about life in general.
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A Appendix

A.1 Methods and algorithms
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Figure A.1: (a) Examples of two limit cycles of the FHN model from equations (2.1, 2.2) with
a = 0, b = 4 and d = 1 for two different values of ε: ε = 0.01 (red) and ε = 0.7 (blue). Nullclines
are shown in gray. (b) Plot of the cubic nullcline f(u), showing the effect of the parameters b and
d on its shape. (c) Time series for u and v of the limit cycle with ε = 0.01. (d) Time series for u
and v of the limit cycle with ε = 0.7.
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Figure A.2: (a) Example of a target pattern arising when integrating the FHN equations with a
circular pacemaker region, with radius R = 20, at the centre of the system. (b) Example of a spiral
arising when integrating the FHN equations with a topological defect at the centre of the system.
Parameter values are at their default values discussed in the text. Blue and white denote positive
and negative values of u, respectively.

Figure A.3: Example of a space-time plot of the U values, where U is defined in Section 2.2, in
a simulation of a spiral pattern. The spiral tip is located at the centre of the system. Shown in
black are the profiles detected by our algorithm, from which the envelope points, shown in red, are
found. Parameter values are at their default values discussed in the text. Blue and white denote
positive and negative values of U , respectively.
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A.2 Results of parameter sweeps

5 10 15 20 25 30
R

0.04

0.06

0.08

0.10

0.12

0.14

C
l

(b) Linear envelope speed varying R

5 10 15 20 25 30
R

3

4

5

6

7

c

(a) Wave speed varying R

Figure A.4: Wave speed and linear envelope speed for varying R, the radius of the circular pace-
maker region.
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Figure A.5: Wave speed and linear envelope speed for varying h, the period difference between the
pacemaker region and the surrounding medium.
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Figure A.6: Wave speed and linear envelope speed for varying a, the asymmetry parameter.
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Figure A.7: Wave speeds and periods of oscillations at the centre (x∗, y∗) for varying Du. Panels
(a) and (c) have Dv = Du, while panels (b) and (d) have Dv = 0.
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Figure A.8: Wave speeds and periods of oscillations at the centre (x∗, y∗), respectively x = L/2,
of target patterns in 2D, respectively 1D, for varying Du. Panels (a) and (c) have Dv = Du, while
panels (b) and (d) have Dv = 0.
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Figure A.9: Wave speed, linear envelope speed and period at the centre for varying ε, the time-scale
separation.

A.3 Results of competition
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Figure A.10: Competition between spirals and target patterns while varying R and h of the pace-
maker. Left: Result of the competition while varying R and h. The colour of each (R, h) dot
denotes the outcome of the simulation for that pair of parameters: yellow if the spiral has won,
gray if both the spiral and target pattern remain (draw), and blue if the target has won. Right:
Boxplots of the difference in envelope speed of the spirals CS and the target patterns CT at all
pairs (R, h), grouped according to the outcome of the competition.
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Figure A.11: Competition between spirals and target patterns while varying ε and h of the pace-
maker. Left: Result of the competition while varying ε and h. The colour of each (ε, h) dot denotes
the outcome of the simulation for that pair of parameters: yellow if the spiral has won, gray if both
the spiral and target pattern remain (draw), and blue of the target has won. Right: Boxplots of
the difference in envelope speed of the spirals CS and the target patterns CT at all pairs (ε, h),
grouped according to the outcome of the competition.

A.4 Experiments

Figure A.12: A snapshot of the experiments performed on Xenopus laevis extracts, where spiral
waves have been observed.
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