Spatiotemporal coordination of the cell division cycle

Thibeau Wouters

Under supervision of Lendert Gelens and Daniel Ruiz Réynes

January 31, 2022

- **1** Introduction & motivation
- **2** Reaction-diffusion equations
- **3** Properties of wave patterns
- Open terms
 Open terms
- G Conclusion

Table of Contents

1 Introduction & motivation

- **2** Reaction-diffusion equations
- **3** Properties of wave patterns
- Operation of the second sec
- **6** Conclusion

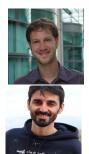
- Master thesis with Nikolay Bobev at ITF
- Research internship at *Laboratory for Dynamics in Biological Systems* (DiBS), Department of Cellular and Molecular Medicine

1/9

- Master thesis with Nikolay Bobev at ITF
- Research internship at *Laboratory for Dynamics in Biological Systems* (DiBS), Department of Cellular and Molecular Medicine

DiBS:

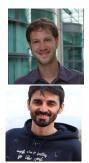
• Supervisors Lendert Gelens and Daniel Ruiz Réynes.



- Master thesis with Nikolay Bobev at ITF
- Research internship at *Laboratory for Dynamics in Biological Systems* (DiBS), Department of Cellular and Molecular Medicine

DiBS:

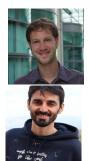
- Supervisors Lendert Gelens and Daniel Ruiz Réynes.
- "Life at all scales is complex, dynamic, and difficult to understand. [...] By combining theory and experiment, our lab aims at understanding such system dynamics, studying living and non-living systems." [1]



- Master thesis with Nikolay Bobev at ITF
- Research internship at *Laboratory for Dynamics in Biological Systems* (DiBS), Department of Cellular and Molecular Medicine

DiBS:

- Supervisors Lendert Gelens and Daniel Ruiz Réynes.
- "Life at all scales is complex, dynamic, and difficult to understand. [...] By combining theory and experiment, our lab aims at understanding such system dynamics, studying living and non-living systems." [1]



DiBS:

- Life: Xenopus laevis frog eggs
- Experiments: cell cycle oscillations in extracts. Waves coordinate cell cycles in space
- Theory: understand the observations

Figure: A Xenopus laevis

frog. [2]

DiBS:

- Life: Xenopus laevis frog eggs
- Experiments: cell cycle oscillations in extracts. Waves coordinate cell cycles in space
- Theory: understand the observations

What about the internship?

• Recently observed *spiral waves*! (Video)

Figure: A Xenopus laevis frog. [2]

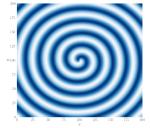
DiBS:

- Life: Xenopus laevis frog eggs
- Experiments: cell cycle oscillations in extracts. Waves coordinate cell cycles in space
- Theory: understand the observations

What about the internship?

- Recently observed *spiral waves*! (Video)
- Goal: Model spiral waves and study their properties.

Figure: A Xenopus laevis frog. [2]



2/9

1 Introduction & motivation

- **2** Reaction-diffusion equations
- **3** Properties of wave patterns
- Occupation Competing wave patterns
- **6** Conclusion

The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) eqs [3, 4] are *reaction-diffusion* eqs modelling concentrations of chemicals:

$$\begin{cases} \partial_t u = \varepsilon^{-1} \left(v - \frac{1}{4} u (u^2 - 4) \right) + D_u \nabla^2 u \\ \partial_t v = a - u + D_v \nabla^2 v \,. \end{cases} \quad (\nabla^2 = \partial_x^2 + \partial_y^2)$$

The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) eqs [3, 4] are *reaction-diffusion* eqs modelling concentrations of chemicals:

$$\begin{cases} \partial_t \mathbf{u} = \varepsilon^{-1} (\mathbf{v} - \frac{1}{4} \mathbf{u} (\mathbf{u}^2 - \mathbf{4})) + D_u \nabla^2 u \\ \partial_t \mathbf{v} = \mathbf{a} - \mathbf{u} + D_v \nabla^2 v . \end{cases} \quad (\nabla^2 = \partial_x^2 + \partial_y^2)$$

Reactions with positive and negative feedback loops give oscillations [5, 6]:

The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) eqs [3, 4] are *reaction-diffusion* eqs modelling concentrations of chemicals:

$$\begin{cases} \partial_t \boldsymbol{u} &= \varepsilon^{-1} \left(\boldsymbol{v} - \frac{1}{4} \boldsymbol{u} (\boldsymbol{u}^2 - \boldsymbol{4}) \right) + \boldsymbol{D}_{\boldsymbol{u}} \boldsymbol{\nabla}^2 \boldsymbol{u} \\ \partial_t \boldsymbol{v} &= \boldsymbol{a} - \boldsymbol{u} + \boldsymbol{D}_{\boldsymbol{v}} \boldsymbol{\nabla}^2 \boldsymbol{v} \,. \end{cases} \quad (\nabla^2 = \partial_x^2 + \partial_y^2)$$

Reactions with positive and negative feedback loops give oscillations [5, 6]:

Diffusion couples oscillators in space. They can synchronise and create coherent wave patterns.

Wave patterns

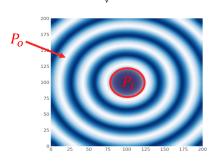
Besides spirals, we also study target patterns. They are generated by **pacemakers** [6]: regions oscillating faster than their surroundings $(P_i < P_o)$. Which pattern (target/spiral) emerges depends on the IC:

Wave patterns

Besides spirals, we also study target patterns. They are generated by **pacemakers** [6]: regions oscillating faster than their surroundings $(P_i < P_o)$. Which pattern (target/spiral) emerges depends on the IC:

 $\mathsf{IC} = \mathsf{homogeneous} + \mathsf{pacemaker}$

11



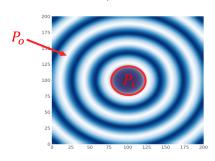
4/9

Wave patterns

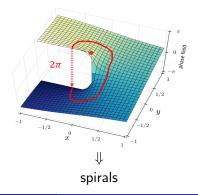
Besides spirals, we also study target patterns. They are generated by **pacemakers** [6]: regions oscillating faster than their surroundings $(P_i < P_o)$. Which pattern (target/spiral) emerges depends on the IC:

 $\mathsf{IC} = \mathsf{homogeneous} + \mathsf{pacemaker}$

1



IC = topological defect [7, 8] (= heterogeneous)



- Introduction & motivation
- **2** Reaction-diffusion equations
- **3** Properties of wave patterns
- Operation of the second sec
- **6** Conclusion

Speeds of wave patterns

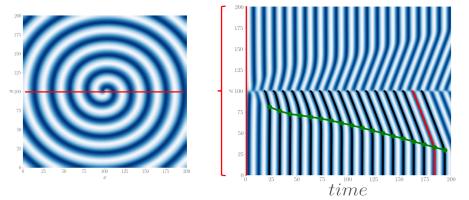
Q1: How do the **properties (speeds, periods)** of the wave patterns depend on the parameters of the FHN equations (ε , a, D_u/D_v ,...)?

<u>Approach</u>: 'Measure' wave speeds *c* and envelope speeds C_{ℓ} from simulations:

Speeds of wave patterns

Q1: How do the **properties (speeds, periods)** of the wave patterns depend on the parameters of the FHN equations (ε , a, D_u/D_v ,...)?

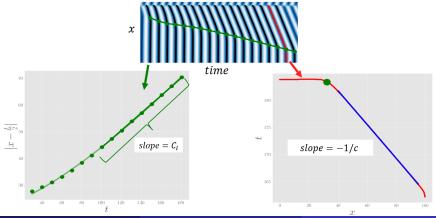
<u>Approach</u>: 'Measure' wave speeds *c* and envelope speeds C_{ℓ} from simulations:



Speeds of wave patterns

Q1: How do the **properties (speeds, periods)** of the wave patterns depend on the parameters of the FHN equations (ε , a, D_u/D_v ,...)?

<u>Approach</u>: 'Measure' wave speeds *c* and envelope speeds C_{ℓ} from simulations:

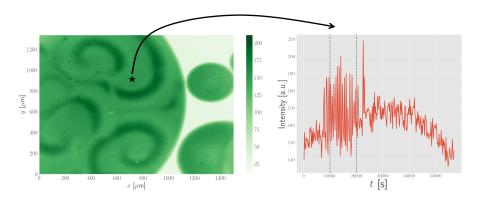


Thibeau Wouters

5/9

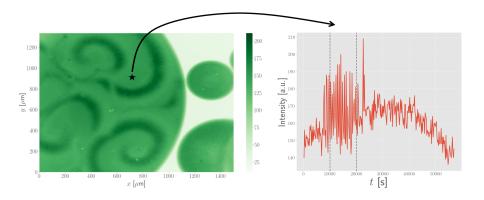
Periods of spirals

A1:



Periods of spirals

A1: Data analysis on the experiments shows periods with *spirals* are $P \sim 10 - 20$ mins, while earlier experiments with *targets* had $P \sim 30 - 40$ mins [9].

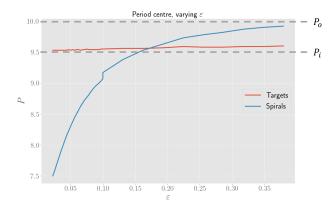


6/9

Periods of spirals

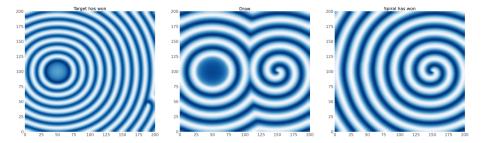
A1: Data analysis on the experiments shows periods with *spirals* are $P \sim 10 - 20$ mins, while earlier experiments with *targets* had $P \sim 30 - 40$ mins [9].

Simulations reproduce this observation.



- Introduction & motivation
- **2** Reaction-diffusion equations
- **③** Properties of wave patterns
- Open terms
 Open terms
- **6** Conclusion

Q2: What if patterns **compete** (cf. video)? Which will 'win'? What is the deciding factor in this competition?



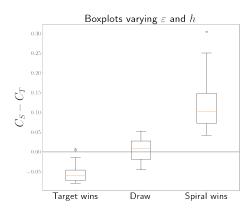
Competition results

A2: We varied ε and $h = P_o - P_i$ = period difference pacemaker and surroundings.

Competition results

A2: We varied ε and $h = P_o - P_i$ = period difference pacemaker and surroundings.

The pattern with the largest envelope speed wins in the end.



- Introduction & motivation
- **2** Reaction-diffusion equations
- **③** Properties of wave patterns
- Occupation Competing wave patterns
- **6** Conclusion

• Spiral waves have been observed in the cell division cycle of *Xenopus laevis* frog egg extracts.

- Spiral waves have been observed in the cell division cycle of *Xenopus laevis* frog egg extracts.
- Reaction-diffusion equations allow us to model and numerically study wave patterns.

- Spiral waves have been observed in the cell division cycle of *Xenopus laevis* frog egg extracts.
- Reaction-diffusion equations allow us to model and numerically study wave patterns.
- Different initial conditions cause different wave patterns (pacemaker → target, topological defect → spiral).

- Spiral waves have been observed in the cell division cycle of *Xenopus laevis* frog egg extracts.
- Reaction-diffusion equations allow us to model and numerically study wave patterns.
- Different initial conditions cause different wave patterns (pacemaker → target, topological defect → spiral).
- Both theory and experiment show that periods of oscillations are lower when spirals are present.

- Spiral waves have been observed in the cell division cycle of *Xenopus laevis* frog egg extracts.
- Reaction-diffusion equations allow us to model and numerically study wave patterns.
- Different initial conditions cause different wave patterns (pacemaker → target, topological defect → spiral).
- Both theory and experiment show that periods of oscillations are lower when spirals are present.
- When wave patterns interact, the envelope speed decides the outcome.

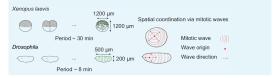
- Gelens Lab, "Home." http://www.gelenslab.org/. [Online; accessed 29-Jan-2022].
- [2] Cambridge University, "Xenopus," https://www.cam.ac.uk/research/research-at-cambridge/animal-research/ about-our-animal-research/which-types-of-animals-do-we-use/xenopus.
 [Online; accessed 29-Jan-2022].
- [3] R. FitzHugh, "Mathematical models of threshold phenomena in the nerve membrane," The bulletin of mathematical biophysics, vol. 17, no. 4, pp. 257–278, 1955.
- [4] J. Nagumo, S. Arimoto, and S. Yoshizawa, "An active pulse transmission line simulating nerve axon," Proceedings of the IRE, vol. 50, no. 10, pp. 2061–2070, 1962.
- [5] J. Rombouts and L. Gelens, "Analytical approximations for the speed of pacemaker-generated waves," *Phys. Rev. E*, vol. 104, p. 014220, Jul 2021.
- [6] J. Rombouts and L. Gelens, "Synchronizing an oscillatory medium: The speed of pacemaker-generated waves," Phys. Rev. Research, vol. 2, p. 043038, Oct 2020.
- J. A. Sepulchre and A. Babloyantz, "Motions of spiral waves in oscillatory media and in the presence of obstacles," Phys. Rev. E, vol. 48, pp. 187–195, Jul 1993.
- [8] M.-A. Bray and J. Wikswo, "Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity," *IEEE Transactions on Biomedical Engineering*, vol. 49, no. 10, pp. 1086–1093, 2002.
- [9] F. E. Nolet, A. Vandervelde, A. Vanderbeke, L. Piñeros, J. B. Chang, and L. Gelens, "Nuclei determine the spatial origin of mitotic waves," *Elife*, vol. 9, p. e52868, 2020.

6 Random back-up slides

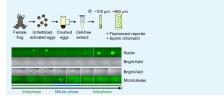
More research internship results

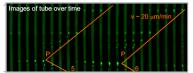
Extracts

Box 1. Spatial cell cycle coordination in early frog and fly embryos.

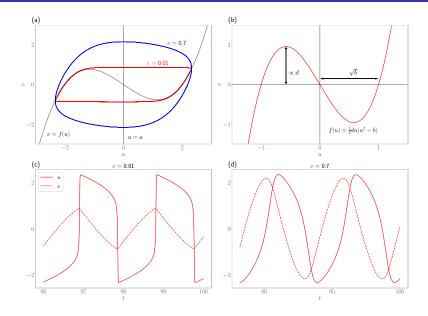


Box 2. Reconstituting cell cycle oscillations using cell-free extracts.

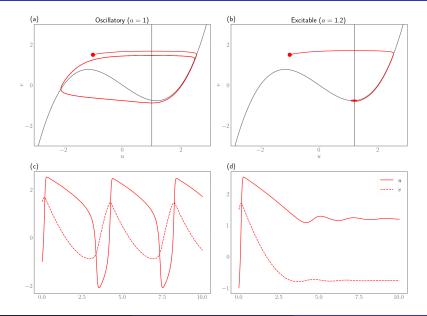




Phase space & ε controls shape oscillations



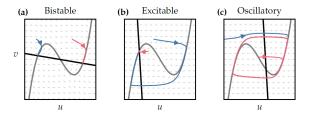
a and oscillatory vs. excitable

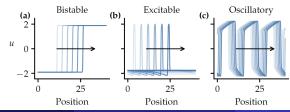


a, b and three regimes

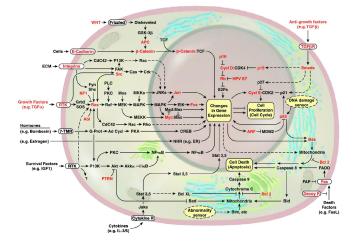
Generalisation of FHN equations:

$$\begin{cases} \partial_t \boldsymbol{u} &= \varepsilon^{-1} \left(\boldsymbol{v} - \frac{1}{4} \boldsymbol{u} (\boldsymbol{u}^2 - \boldsymbol{4}) \right) + D_{\boldsymbol{u}} \nabla^2 \boldsymbol{u} \\ \partial_t \boldsymbol{v} &= \boldsymbol{a} - \boldsymbol{u} - \boldsymbol{b} \boldsymbol{v} + D_{\boldsymbol{v}} \nabla^2 \boldsymbol{v} \,. \end{cases}$$





Network diagrams & complexity of the cell



Numerical integration details

Numerical integrations are done using:

- Python, Numpy, Matplotlib, Scipy,...,
- in a square domain of side length L = 200, divided into N^2 grid points, usually N = 200, with no-flux boundary conditions,
- integrated with the forward Euler scheme, dt = 0.01 (usually) and for a time T = 1000,
- with default parameter values $a = 0, D_u = 1, D_v = 0.1, \varepsilon = 0.1$,
- time-steps are rescaled using a space-dependent factor, to simulate pacemaker domains and have identical background oscillation periods fixed between several simulations.

Large simulations are done using the HPC cluster of supercomputers, provided by the FWO.

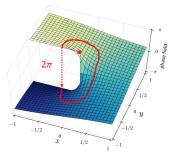
Initial conditions for the topological defect

Our IC for the topological defect:

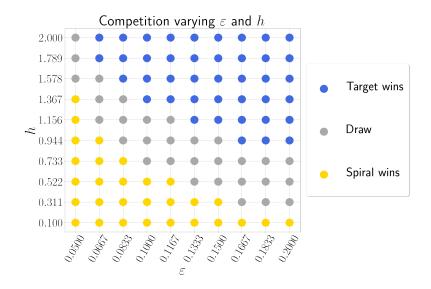
$$u_0(x,y) = \frac{(x-x_0)}{L}, \quad v_0(x,y) = \frac{(y-y_0)}{L},$$

with usually $x_0 = y_0 = 0$: spiral tip at $(\frac{L}{2}, \frac{L}{2})$. The phase field is defined as $\varphi(u_0, v_0) = \operatorname{atan2}(u_0, v_0)$.

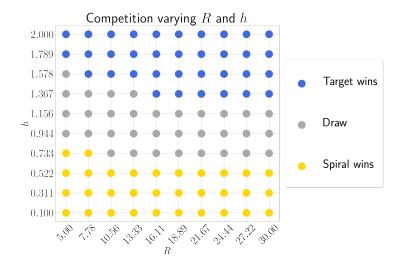
For the above IC, this is precisely the usual atan2 plot as shown earlier:



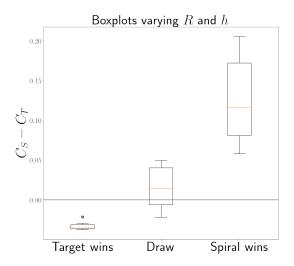
Competition results



Competition, varying R and $h = P_o - P_i$



Competition, varying R and $h = P_o - P_i$



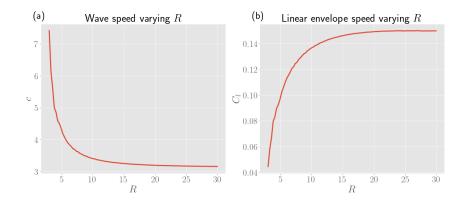
Recall goal of DiBS:

- Do topological defects arise in experiments?
- Parameters of the model are constants: unlikely for real biological systems. What would happen if they vary?
- Continue studying interaction between patterns:
 - What about 2 pacemakers, or 2 spirals?
 - What if pacemakers and topological defects overlap? Observed in experiments!

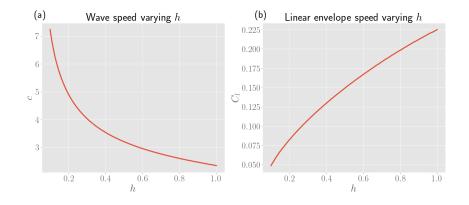
6 Random back-up slides

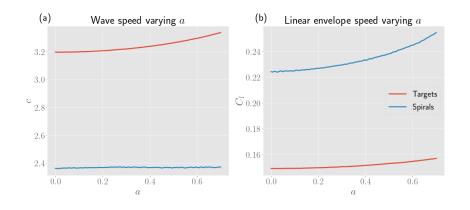
Ø More research internship results

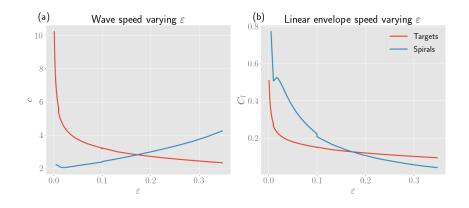
Varying R for targets



Varying *h* for targets







Varying D_u

